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a b s t r a c t 

Weakly-supervised learning based on, e.g., partially labelled images or image-tags, is currently attracting 

significant attention in CNN segmentation as it can mitigate the need for full and laborious pixel/voxel 

annotations. Enforcing high-order (global) inequality constraints on the network output (for instance, to 

constrain the size of the target region) can leverage unlabeled data, guiding the training process with 

domain-specific knowledge. Inequality constraints are very flexible because they do not assume exact 

prior knowledge. However, constrained Lagrangian dual optimization has been largely avoided in deep 

networks, mainly for computational tractability reasons. To the best of our knowledge, the method of 

Pathak et al. (2015a) is the only prior work that addresses deep CNNs with linear constraints in weakly 

supervised segmentation. It uses the constraints to synthesize fully-labeled training masks (proposals) 

from weak labels, mimicking full supervision and facilitating dual optimization. 

We propose to introduce a differentiable penalty, which enforces inequality constraints directly in the 

loss function, avoiding expensive Lagrangian dual iterates and proposal generation. From constrained- 

optimization perspective, our simple penalty-based approach is not optimal as there is no guarantee 

that the constraints are satisfied. However, surprisingly, it yields substantially better results than the 

Lagrangian-based constrained CNNs in Pathak et al. (2015a) , while reducing the computational demand 

for training. By annotating only a small fraction of the pixels, the proposed approach can reach a level 

of segmentation performance that is comparable to full supervision on three separate tasks. While our 

experiments focused on basic linear constraints such as the target-region size and image tags, our frame- 

work can be easily extended to other non-linear constraints, e.g., invariant shape moments (Klodt and 

Cremers, 2011) and other region statistics (Lim et al., 2014). Therefore, it has the potential to close the 

gap between weakly and fully supervised learning in semantic medical image segmentation. Our code is 

publicly available. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

In the recent years, deep convolutional neural networks (CNNs)

have been dominating semantic segmentation problems, both in

computer vision and medical imaging, achieving ground-breaking

performances when full-supervision is available ( Long et al., 2015;

Dolz et al., 2018; Litjens et al., 2017 ). In semantic segmenta-

tion, full supervision requires laborious pixel/voxel annotations,

which may not be available in a breadth of applications, more

so when dealing with volumetric data. Furthermore, pixel/voxel

level annotations become a serious impediment for scaling

deep segmentation networks to new object categories or target

domains. 
� Conflict of interest. None. 
∗ Corresponding author. 

E-mail address: hoel.kervadec.1@etsmtl.net (H. Kervadec). 
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To reduce the burden of pixel-level annotations, weak supervi-

ion in the form partial or uncertain labels, for instance, bounding

oxes ( Dai et al., 2015 ), points ( Bearman et al., 2016 ), scribbles

 Lin et al., 2016; Tang et al., 2018a ), or image tags ( Pinheiro and

ollobert, 2015; Wei et al., 2017 ), is attracting significant research

ttention. Imposing prior knowledge on the network’s output in

he form of unsupervised loss terms is a well-established ap-

roach in machine learning ( Weston et al., 2012; Goodfellow et al.,

016 ). Such priors can be viewed as regularization terms that

everage unlabeled data, embedding domain-specific knowledge.

or instance, the recent studies in Tang et al. (2018b,a) showed

hat direct regularization losses, e.g., dense conditional random

eld (CRF) or pairwise clustering, can yield outstanding results in

eakly supervised segmentation, reaching almost full-supervision

erformances in natural image segmentation. Surprisingly, such

 principled direct-loss approach is not common in weakly su-

ervised segmentation. In fact, most of the existing techniques

ynthesize fully-labeled training masks (proposals) from the

https://doi.org/10.1016/j.media.2019.02.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2019.02.009&domain=pdf
mailto:hoel.kervadec.1@etsmtl.net
https://doi.org/10.1016/j.media.2019.02.009
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vailable partial labels, mimicking full supervision ( Rajchl et al.,

017; Papandreou et al., 2015; Lin et al., 2016; Kolesnikov and

ampert, 2016 ). Typically, such proposal-based techniques iter-

te two steps: CNN learning and proposal generation facilitated

y dense CRFs and fast mean-field inference ( Krähenbühl and

oltun, 2011 ), which are now the de-facto choice for pairwise

egularization in semantic segmentation algorithms. 

Our purpose here is to embed high-order (global) inequality

onstraints on the network outputs directly in the loss function,

o as to guide learning. For instance, assume that we have some

rior knowledge on the size (or volume) of the target region, e.g.,

n the form of lower and upper bounds on size, a common sce-

ario in medical image segmentation ( Niethammer and Zach, 2013;

orelick et al., 2013 ). Let I : � ⊂ R 

2 , 3 → R denotes a given training

mage, with � a discrete image domain and | �| the number of

ixels/voxels in the image. �L ⊆� is a weak (partial) ground-truth

egmentation of the image, taking the form of a partial annotation

f the target region, e.g., a few points (see Fig. 2 ). In this case, one

an optimize a partial cross-entropy loss subject to inequality con-

traints on the network outputs ( Pathak et al., 2015a ): 

in 

θ
H(S) s.t a � 

∑ 

p∈ �
S p � b (1)

here S = (S 1 , . . . , S | �| ) ∈ [0 , 1] | �| is a vector of softmax prob-

bilities 1 generated by the network at each pixel p and H(S) =∑ 

p∈ �L 
log (S p ) . Priors a and b denote the given upper and lower

ounds on the size (or cardinality) of the target region. Inequal-

ty constraints of the form in (1) are very flexible because they

o not assume exact knowledge of the target size, unlike ( Zhang

t al., 2017; Boykov et al., 2015; Jia et al., 2017 ). Also, multiple in-

tance learning (MIL) constraints ( Pathak et al., 2015a ), which en-

orce image-tag priors, can be handled by constrained model (1) .

mage tags are a form of weak supervision, which enforce the con-

traints that a target region is present or absent in a given training

mage ( Pathak et al., 2015a ). They can be viewed as particular cases

f the inequality constraints in (1) . For instance, a suppression con-

traint, which takes the form �p ∈ �S p � 0, enforces that the target

egion is not in the image. �p ∈ �S p � 1 enforces the presence of

he region. 

Even though constraints of the form (1) are linear (and hence

onvex) with respect to the network outputs, constrained problem

1) is very challenging due to the non-convexity of CNNs. One pos-

ibility would be to minimize the corresponding Lagrangian dual.

owever, as pointed out in ( Pathak et al., 2015a; Márquez-Neila

t al., 2017 ), this is computationally intractable for semantic seg-

entation networks involving millions of parameters; one has to

ptimize a CNN within each dual iteration. In fact, constrained op-

imization has been largely avoided in deep networks ( Ravi et al.,

018 ), even thought some Lagrangian techniques were applied to

eural networks a long time before the deep learning era ( Zhang

nd Constantinides, 1992; Platt and Barr, 1988 ). These constrained

ptimization techniques are not applicable to deep CNNs as they

olve large linear systems of equations. The numerical solvers un-

erlying these constrained techniques would have to deal with

atrices of very large dimensions in the case of deep networks

 Márquez-Neila et al., 2017 ). 

To the best of our knowledge, the method of

athak et al. (2015a) is the only prior work that addresses

nequality constraints in deep weakly supervised CNN segmen-

ation. It uses the constraints to synthesize fully-labeled training

asks (proposals) from the available partial labels, mimicking
1 The softmax probabilities take the form: S p ( θ, I ) ∝ exp f p ( θ, I ), where f p ( θ, I ) is a 

eal scalar function representing the output of the network for pixel p . For notation 

implicity, we omit the dependence of S p on θ and I as this does not result in any 

mbiguity in the presentation. 

w  
ull supervision, which avoids intractable dual optimization of the

onstraints when minimizing the loss function. The main idea

f Pathak et al. (2015a) is to model the proposals via a latent

istribution. Then, it minimize a KL divergence, encouraging the

oftmax output of the CNN to match the latent distribution as

losely as possible. Therefore, they impose constraints on the

atent distribution rather than on the network output, which

acilitates Lagrangian dual optimization. This decouples stochas-

ic gradient descent learning of the network parameters and

onstrained optimization: The authors of Pathak et al. (2015a) al-

ernate between optimizing w.r.t the latent distribution, which

orresponds to proposal generation subject to the constraints, 2 

nd standard stochastic gradient descent for optimizing w.r.t the

etwork parameters. 

We propose to introduce a differentiable term, which enforces

nequality constraints (1) directly in the loss function, avoiding

xpensive Lagrangian dual iterates and proposal generation. From

onstrained optimization perspective, our simple approach is not

ptimal as there is no guarantee that the constraints are satisfied.

owever, surprisingly, it yields substantially better results than the

agrangian-based constrained CNNs in Pathak et al. (2015a) , while

educing the computational demand for training. In the context

f cardiac image segmentation, we reached a performance close

o full supervision while using a fraction of the full ground-truth

abels (0.1%). Our framework can be easily extended to non-linear

nequality constraints, e.g., invariant shape moments ( Klodt and

remers, 2011 ) or other region statistics ( Lim et al., 2014 ). There-

ore, it has the potential to close the gap between weakly and

ully supervised learning in semantic medical image segmentation.

ur code is publicly available 3 . 

. Related work 

.1. Weak supervision for semantic image segmentation 

Training segmentation models with partial and/or uncertain

nnotations is a challenging problem ( Vezhnevets et al., 2011;

uhmann et al., 2012 ). Due to the relatively easy task of providing

lobal, image-level information about the presence or absence of

bjects in an image, many weakly supervised approaches used im-

ge tags to learn a segmentation model ( Verbeek and Triggs, 2007;

ezhnevets and Buhmann, 2010 ). For example, in Verbeek and

riggs (2007) , a probabilistic latent semantic analysis (PLSA) model

as learned from image-level keywords. This model was later em-

loyed as a unary potential in a Markov random field (MRF) to

apture the spatial 2D relationships between neighbours. Also,

ounding boxes have become very popular as weak annotations

ue, in part, to the wide use of classical interactive segmentation

pproaches such as the very popular GrabCut ( Rother et al., 2004 ).

his method learns two Gaussian mixture models (GMM) to model

he foreground and background regions defined by the bounding

ox. To segment the image, appearance and smoothness are en-

oded in a binary MRF, for which exact inference via graph-cuts

s possible, as the energies are sub-modular. Another popular

orm of weak supervision is the use of scribbles, which might

e performed interactively by an annotator so as to correct the

egmentation outcome. 

GrabCut is a notable example in a wide body of “shallow” in-

eractive segmentation works that used weak supervision before

he deep learning era. More recently, within the computer vision

ommunity, there has been a substantial interest in leveraging

eak annotations to train deep CNNs for color image segmentation
2 This sub-problem is convex when the constraints are convex. 
3 The code can be found at https://github.com/LIVIAETS/SizeLoss _ WSS . 

https://www.github.com/LIVIAETS/SizeLoss_WSS
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Fig. 1. Illustration of our differentiable loss for imposing soft size constraints on 

the target region. 
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using, for instance, image tags ( Pathak et al., 2015a; 2015b; Xu

et al., 2014; Papandreou et al., 2015; Pinheiro and Collobert, 2015;

Wei et al., 2017 ), bounding boxes ( Dai et al., 2015; Rajchl et al.,

2017; Khoreva et al., 2017 ), scribbles ( Xu et al., 2015; Lin et al.,

2016; Vernaza and Chandraker, 2017; Tang et al., 2018b; 2018a ) or

points ( Bearman et al., 2016 ). Most of these weakly supervised se-

mantic segmentation techniques mimic full supervision by gener-

ating full training masks (segmentation proposals) from the weak

labels. The proposals can be viewed as synthesized ground-truth

used to train a CNN. In general, these techniques follow an it-

erative process that alternates two steps: (1) standard stochastic

gradient descent for training a CNN from the proposals; and (2)

standard regularization-based segmentation, which yields the pro-

posals. This second step typically uses a standard optimizer such

mean-field inference ( Papandreou et al., 2015; Rajchl et al., 2017 )

or graph cuts ( Lin et al., 2016 ). In particular, the dense CRF reg-

ularizer of Krähenbühl and Koltun (2011) , facilitated by fast par-

allel mean-field inference, has become very popular in semantic

segmentation, both in the fully ( Arnab et al., 2018; Chen et al.,

2015 ) and weakly ( Papandreou et al., 2015; Rajchl et al., 2017 ) su-

pervised settings. This followed from the great success of DeepLab

( Chen et al., 2015 ), which popularized the use of dense CRF and

mean-field inference as a post-processing step in the context fully

supervised CNN segmentation. 

An important drawback of these proposal strategies is that they

are vulnerable to errors in the proposals, which might reinforce

themselves in such self-taught learning schemes ( Chapelle et al.,

2006 ), undermining convergence guarantee. The recent approaches

in Tang et al. (2018b,a) have integrated standard regularizers such

as dense CRF or pairwise graph clustering directly into the loss

functions, avoiding extra inference steps or proposal generation.

Such direct regularization losses achieved state-of-the-art per-

formances for weakly supervised color segmentation, reaching

near full-supervision accuracy. While these approaches encourage

pairwise consistencies between pixels during training, they do not

explicitly impose global constraint as in (1) . 

2.2. Medical image segmentation with weak supervision 

Despite the increasing amount of works focusing on weakly

supervised deep CNNs in semantic segmentation of color im-

ages, leveraging weak annotations in medical imaging settings

is not simple. To our knowledge, the literature on this mat-

ter is still scarce, which makes weak-supervision approaches

appealing in medical image segmentation. As in color images,

common settings for weak annotations are bounding boxes. For

instance, DeepCut ( Rajchl et al., 2017 ) follows a similar setting as

Papandreou et al. (2015) . It generates image proposals, which are

refined by a dense CRF before being re-used as “fake” labels to

train the CNN. Using the bounding boxes as initializations for the

Grab-cut algorithm, the authors showed that, by this iterative op-

timization scheme, one can obtain a performance better than the

shallow counterpart, i.e., GrabCut. In another weakly supervised

scenario ( Rajchl et al., 2016 ), images were segmented in an unsu-

pervised manner, generating a set of super-pixels ( Achanta et al.,
012 ), among which users had to select the regions belonging

o the object of interest. Then, these masks generated from the

uper-pixels were employed to train a CNN. Nevertheless, as pro-

osals are generated in an unsupervised manner, and due to the

oor contrast and challenging targets typically present in medical

mages, these “fake” labels are likely prone to errors, which can be

ropagated during training, as stated before. 

.3. Constrained CNNs 

To the best of our knowledge, there are only a few recent

orks ( Pathak et al., 2015a; Márquez-Neila et al., 2017; Jia et al.,

017 ) that addressed imposing global constraints on deep CNNs.

n fact, standard Lagrangian-dual optimization has been com-

letely avoided in modern deep networks involving millions of

arameters. As pointed out recently in ( Pathak et al., 2015a;

árquez-Neila et al., 2017 ), there is a consensus within the com-

unity that imposing constraints on the outputs of deep CNNs

hat are common in modern computer vision and medical image

nalysis problems is impractical: The direct use of Lagrangian-dual

ptimization for networks with millions of parameters requires

raining a whole CNN after each iterative dual step ( Pathak et al.,

015a ). To avoid computationally intractable dual optimization,

athak et al. (2015a) imposed inequality constraints on a latent

istribution instead of the network output. This latent distribution

escribes a “fake” ground truth (or segmentation proposal). Then,

hey trained a single CNN so as to minimize the KL divergence

etween the network probability outputs and the latent distribu-

ion. This prior-art work is the most closely related to our study

nd, to our knowledge, is the only work that addressed inequality

onstraints in weakly supervised CNN segmentation. The work in

árquez-Neila et al. (2017) imposed hard equality constraints on

D human pose estimation. To tackle the computational difficulty,

hey used a Kyrlov sub-space approach and limited the solver

o only a randomly selected sub-set of the constraints within

ach iteration. Therefore, constraints that are satisfied at one

teration may not be satisfied at the next, which might explain

he negative results in ( Márquez-Neila et al., 2017 ). A surprising

esult in ( Márquez-Neila et al., 2017 ) is that replacing the equality

onstraints with simple L 2 penalties yields better results than

agrangian optimization, although such a simple penalty-based

ormulation does not guarantee constraint satisfaction. A similar L 2 
enalty was used in Jia et al. (2017) to impose equality constraints

n the size of the target regions in the context of histopathology

egmentation. While the equality-constrained formulations in

 Márquez-Neila et al., 2017; Jia et al., 2017 ) are very interesting,

hey assume exact knowledge of the target function (e.g., region

ize), unlike the inequality-constraint formulation in (1) , which al-

ows much more flexibility as to the required prior domain-specific

nowledge. 

. Proposed loss function 

We propose the following loss for weakly supervised segmen-

ation: 

(S) + λ C (V S ) , (2)

here V S = 

∑ 

p∈ � S p , λ is a positive constant that weighs the im-

ortance of constraints, and function C is given by (See the illus-

ration in Fig. 1 ): 

(V S ) = 

⎧ ⎨ 

⎩ 

( V S − a ) 
2 
, if V S < a 

( V S − b ) 
2 
, if V S > b 

0 , otherwise 

(3)
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Now, our differentiable term C accommodates standard stochas-

ic gradient descent. During back-propagation, the term of

radient-descent update corresponding to C can be written as fol-

ows: 

∂C(V S ) 

∂ θ
∝ 

⎧ ⎪ ⎨ 

⎪ ⎩ 

( a − V S ) 
∂S p 
∂ θ

, if V S < a 

( b − V S ) 
∂S p 
∂ θ

, if V S > b 

0 , otherwise 

(4) 

here 
∂S p 
∂ θ

denotes the standard derivative of the softmax outputs

f the network. The gradient in (4) has a clear interpretation. Dur-

ng back-propagation, when the current constraints are satisfied,

.e., a � V S � b , observe that 
∂C(V S ) 

∂ θ
= 0 . Therefore, in this case, the

radient stemming from our term has no effect on the current

pdate of the network parameters. Now, suppose without loss

f generality that the current set of parameters θ corresponds to

 S < a , which means the current target region is smaller than its

ower bound a . In this case of constraint violation, term (a − V S )

s positive and, therefore, the first line of (4) performs a gradient

scent step on softmax outputs, increasing S p . This makes sense

ecause it increases the size of the current region, V S , so as to

atisfy the constraint. The case V S > b has a similar interpretation. 

The next section details the dataset, the weak annotations and

ur implementation. Then, we report comprehensive evaluations

f the effect of our constrained-CNN losses on segmentation

erformance. We also report comparisons to the Lagrangian-based

onstrained CNN method in Pathak et al. (2015a) and to the fully

upervised setting. 

. Experiments 

.1. Medical image data 

In this section, the proposed loss function is evaluated on three

ublicly available datasets, each corresponding to a different appli-

ation – cardiac, vertebral body and prostate segmentation. Below

re additional details of these data sets. 

.1.1. Left-ventricle (LV) on cine MRI 

A part of our experiments focused on left ventricular endo-

ardium segmentation. We used the training set from the publicly

vailable data of the 2017 ACDC Challenge. 4 This set consists of

00 cine magnetic resonance (MR) exams covering well defined

athologies: dilated cardiomyopathy, hypertrophic cardiomyopathy, 

yocardial infarction with altered left ventricular ejection fraction

nd abnormal right ventricle. It also included normal subjects.

ach exam contains acquisitions only at the diastolic and systolic

hases. The exams were acquired in breath-hold with a retrospec-

ive or prospective gating and a SSFP sequence in 2-chambers,

-chambers and in short-axis orientations. A series of short-axis

lices cover the LV from the base to the apex, with a thickness

f 5–8 mm and an inter-slice gap of 5 mm. The spatial resolution

oes from 0.83 to 1.75 mm 

2 /pixel. For all the experiments, we

mployed the same 75 exams for training and the remaining 25

or validation. 

.1.2. Vertebral body (VB) on MR-T2 

This dataset contains 23 3D T2-weighted turbo spin echo MR

mages from 23 patients and the associated ground-truth segmen-

ation, and is freely available from. 5 Each patient was scanned

ith 1.5 Tesla MRI Siemens scanner (Siemens Healthcare, Erlangen,

ermany) to generate T2-weighted sagittal images. All the images
4 https://www.creatis.insa-lyon.fr/Challenge/acdc/ . 
5 https://doi.org/10.5281/zenodo.22304 . 

g  
re sampled to have the same sizes of 39 × 305 × 305 voxels, with

 voxel spacing of 2 × 1.25 × 1.25 mm 

3 . In each image, 7 vertebral

odies, from T11 to L5, were manually identified and segmented,

esulting in 161 labeled regions in total. For this dataset, we

mployed 15 scans for training and the remaining 5 for validation.

.1.3. Prostate segmentation on MR-T2 

The third dataset was made available at the MICCAI 2012

rostate MR segmentation challenge 6 . It contains the transver-

al T2-weighted MR images of 50 patients acquired at different

enters with multiple MRI vendors and different scanning proto-

ols. It is comprised of various diseases, i.e., benign and prostate

ancers. The images resolution ranges from 15 × 256 × 256 to

4 × 512 × 512 voxels with a spacing ranging from 2 × 0.27 × 0.27

o 4 × 0 . 75 × 0 . 75 mm 

3 . We employed 40 patients for training and

0 for validation. 

.2. Weak annotations 

To show that the proposed approach is robust to the strategy

or generating the weak labels, as well as to their location, we

onsider two different strategies generating weak annotations from

ully labeled images. Fig. 2 depicts some examples of fully anno-

ated images and the corresponding weak labels. 

rosion. For the left-ventricle dataset, we employed binary erosion

n the fully annotations with a kernel of size 10 × 10. If the

esulted label disappeared, we repeated the operation with a

maller kernel (i.e., 7 × 7) until we get a small contour. Thus,

he total number of annotated pixels represented the 0.1% of the

abeled pixels in the fully supervised scenario. This correspond to

he second row in Fig. 2 . 

andom point. The weak labels for the vertebral body and prostate

atasets were generated by randomly selecting a point within the

round-truth mask and creating a circle around it with a max-

mum radius of 4 pixels (fourth and sixth row in Fig. 2 ), while

nsuring there is no overlap with the background. With these

eak annotations, only 0.02% of the pixels in the dataset have

round-truth labels. 

.3. Different levels of supervision 

Training models with diverse levels of supervision requires that

ppropriate objectives be defined for each case. In this section, we

ntroduce the different models, each with different levels of super-

ision. 

.3.1. Baselines 

We trained a segmentation network from weakly annotated

mages with no additional information, which served as a lower

aseline. Training this model relies on minimizing the cross-

ntropy corresponding to the fraction of labeled pixels: H(S) =∑ 

p∈ �L 
log (S p ) . In the following discussion of the experiments,

e refer to this model as partial cross-entropy (CE) . 

As an upper baseline, we resort to the fully-supervised setting,

here class labels (foreground and background) are known for ev-

ry pixel during training ( �L = �). This model is referred to as

ully-supervised . 

.3.2. Size constraints 

We incorporated information about the size of the target re-

ion during training, and optimized the partial cross-entropy loss
6 https://promise12.grand-challenge.org . 

https://www.creatis.insa-lyon.fr/Challenge/acdc/
https://doi.org/10.5281/zenodo.22304
https://www.promise12.grand-challenge.org
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Fig. 2. Examples of different levels of supervision. In the fully labeled images ( top ), all pixels are annotated, with red depicting the background and green the region of 

interest. In the weakly supervised cases ( bottom ), only the labels of the green pixels are known. The images were cropped for a better visualization of the weak labels. The 

original images are of size 256 × 256 pixels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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subject to inequality constraints of the general form in Eq. (1) . We

trained several models using the same weakly annotated images

but different constraint values. 

Image tags bounds. Similar to MIL scenarios, we first used image-

tag priors by enforcing the presence or absence of a the target in

a given training image, as introduced earlier. This reduces to en-

forcing that the size of the predicted region is less or equal to 0 if

the target is absent from the image, or larger than 0 otherwise. To

simplify the implementation, we can represent the constraints as:

a, b = 

{
1 , | �| if target is present (�L � = ∅ ) 
0 , 0 otherwise 

. (5)

While being very coarse, these constraints convey relevant in-

formation about the target regions, which may be used to find

common patterns in the case of region absence or presence. 

Common bounds. The next level of supervision consists of using

tighter bounds for the positive cases, instead of (1, | �|). To this

end, the complete segmentation of a single patient is employed
o compute the minimum and maximum size of the target region

cross all the slices. Then, we multiplied these minimum and

aximum values by 0.9 and 1.1, respectively, to account for inter-

atient variability. In this case, all the images containing the object

f interest have the same lower and upper bounds. As an example,

his results in the following values for the ACDC dataset: 

, b = 

{
60 , 20 0 0 if target is present (�L � = ∅ ) 
0 , 0 otherwise 

. (6)

ndividual bounds. With common bounds, the range of values for

 given target may be very large. To investigate whether a more

recise knowledge of the target is helpful, we also consider the

se of individual bounds for each slice, based on the true size of

he region: 

Y = 

∑ 

p∈ �
Y p , 

ith Y = (Y 1 , . . . , Y | �| ) ∈ { 0 , 1 } | �| denoting the full annotation of

mage I . As before, we introduce some uncertainty on the target
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e  

a  

H  
ize, and multiply τ Y by the same lower and upper factors, result-

ng in the following bounds: 

, b = 

{
0 . 9 τY , 1 . 1 τY if target is present (�L � = ∅ ) 
0 , 0 otherwise 

. (7) 

.3.3. Hybrid training 

We also investigate whether combining our proposed weak su-

ervision approach with fully annotated images during the training

eads to performance improvements. For this purpose, considering

e have a training set of m weakly annotated images, we replace

 ( n < m ) among these by their fully annotated counterparts. Thus,

he training amounts to minimizing the cross-entropy loss for the

 fully annotated images, along with the partial cross-entropy con-

trained with common size bounds for the remaining m − n weakly

abeled images. To examine the positive effect of size constraints in

his scenario (referred to as Hybrid ), we compare the results to a

etwork trained with the n fully annotated images (without con-

traints). 

.4. Constraining a 3D volume 

We can extend our formulation to constrain a 3D volume as

ollows: 
 

S∈ B 
H(S) + λC(V B ) , with V B = 

∑ 

S∈ B 
V S 

here V B denotes the target-region volume, B = ((Y 1 , S 1 ) , . . . ,

(Y | B | , S | B | )) denotes a training batch containing all the 2D slices of

he 3D volume 7 , and the 3D constraints are now given by: 

, b = 0 . 9 τB , 1 . 1 τB , with τB = 

∑ 

Y ∈ B 
τY 

otice that, with constraints on the whole 3D volume, we have

ess supervision than the 2D scenarios from 4.3.2 , where all the

D slices have independent supervision (e.g., the image tags). 

.5. Training and implementation details 

For the experiments on the left-ventricle and vertebral-body

atasets, we used ENet ( Paszke et al., 2016 ), as it has shown a

ood trade-off between accuracy and inference time. Due to the

igher difficulty of the prostate segmentation task, we employed a

ully residual version of U-Net ( Ronneberger et al., 2015 ), similar to

uan et al. (2016) . 

For the three datasets, we trained the networks from scratch

sing the Adam optimizer and an initial learning rate of 5 × 10 −4 

hat we decreased by a factor of 2 if the performances on the

alidation set did not improve over 20 epochs. All the 3D vol-

mes were sliced into 256 × 256 pixels images, and zero-padded

hen needed. Batch sizes were equal to 1, 4, and 20 for the left-

entricle, prostate and vertebral body, respectively. Those values

ere not tuned for optimal performances, but to speed-up exper-

ments when enough data were available. The weight of our loss

n (2) was empirically set to 1 × 10 −2 . Due to the difficulty of the

ask, data augmentation was used for the prostate dataset, where

e generated 4 copies of each training image using random mir-

oring, flipping and rotation. 

All our tests were implemented in Pytorch ( Paszke et al., 2017 ).

e ran the experiments on a machine equipped with a NVIDIA

TX 1080 Ti GPU (11GBs of video memory), AMD Ryzen 1700X CPU

nd 32GBs of memory. The code is available at https://github.com/

IVIAETS/SizeLoss _ WSS . We used the common Dice similarity coef-

cient (DSC) to evaluate the segmentation performance of trained

odels. 
7 For readability, we simplify a batch as a list of labels Y and associated predic- 

ions S . 

s  

a  

b  

r  
.5.1. Modification and tweaks for Lagrangian proposals 

For a fair comparison, we re-implemented the Lagrangian-

roposal method of Pathak et al. (2015a) in PyTorch, to take

dvantage of GPU capabilities and avoid costly transfers between

PU and CPU. Lagrangian proposals reuse the same network and

oss function as the fully-supervised setting. At each iteration,

he method alternates between two steps. First, it synthesizes a

round truth 

˜ Y with projected gradient ascent (PGA) over the dual

ariables, with the network parameters fixed. Then, for fixed 

˜ Y ,

he cross-entropy between 

˜ Y and S is optimized as in standard

ully-supervised CNN training. The learning rate used for this PGA

as set experimentally to 5 × 10 −5 , as sub-optimal values lead to

umerical errors. We found that limiting the number of iterations

or the PGA to 500 (instead of the original 3000) saved time

ithout affecting the results. 

We also introduced an early stopping mechanism into the

GA in the case of convergence, to improve speed without im-

acting the results (a comparison can be found in Table 5 ). The

onstraints of the form 0 � V S � 0 required specific care, as the

ormulation from ( Pathak et al., 2015a ) is not designed to work

n equalities, unlike our penalty approach, which systematically

andles equality constraints when a = b. In this case, the bounds

or Pathak et al. (2015a) were modified to −1 � V S � 0 . 

. Results 

To validate the proposed approach, we first performed a series

f experiments focusing on LV segmentation. In Section 5.1 , the

mpact of including size constraints is evaluated using our direct

enalty. We further compare to the Lagrangian-proposal method

n Pathak et al. (2015a) , showing that our simple method yields

ubstantial improvements over ( Pathak et al., 2015a ) in the same

eakly supervised settings. We also provide the results for several

egrees of supervision, including hybrid and fully supervised

earning in Section 5.2 . Then, to show the wide applicability of

he proposed constrained loss, results are reported for two other

pplications in Section 5.3 : MR-T2 vertebral body segmentation

nd prostate segmentation task. We further provide qualitative

esults for the three applications in Section 5.4 . In Section 5.5 , we

nvestigate the sensitivity of the proposed loss to both the lower

nd upper bounds. Finally, the efficiency of different learning

trategies are compared ( Section 5.6 ), showing that our direct

onstrained-CNN loss does not add to the training time, unlike the

agrangian-proposal method in Pathak et al. (2015a) . 

.1. Weakly supervised segmentation with size constraints 

D segmentation . Table 1 reports the results on the left-ventricle

alidation set for all the models trained with both the Lagrangian

roposals in Pathak et al. (2015a) and our direct loss. As expected,

sing the partial cross entropy with a fraction of the labeled pixels

ielded poor results, with a mean DSC less than 15%. Enforcing

he image-tag constraints, as in the MIL scenarios, increased

ubstantially the DSC to a value of 0.7924. Using common bounds

ncreased the results marginally in this case, slightly increasing

he mean Dice value by 1%. The Lagrangian proposal ( Pathak et al.,

015a ) reaches similar results, albeit slightly lower and much

ore unstable than our penalty approach (see Fig. 3 ). 

The difference in performance is more pronounced when we

mploy individual bounds instead. In this setting, our method

chieves a DSC of 0.8708, only 2% lower than full supervision.

owever, the Lagrangian-proposal method achieves a performance

imilar to using common (loose) bounds, suggesting that it is not

ble to make use of this extra, more precise information. This can

e explained by its proposal-generation method, which tends to

einforce early mistakes (especially when training from scratch):

https://www.github.com/LIVIAETS/SizeLoss_WSS
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Table 1 

Left-ventricle segmentation results with different levels of supervision. Bold font highlights the best weakly supervised setting. 

Model Method DSC (Val) 

Weakly supervised Partial CE 0.1497 

CE + Tags Lagrangian Proposals ( Pathak et al., 2015a ) 0.7707 

Partial CE + Tags Direct loss (Ours) 0.7924 

CE + Tags + Size ∗ Lagrangian Proposals ( Pathak et al., 2015a ) 0.7854 

Partial CE + Tags + Size ∗ Direct loss (Ours) 0.8004 

CE + Tags + Size ∗∗ Lagrangian Proposals ( Pathak et al., 2015a ) 0.7900 

Partial CE + Tags + Size ∗∗ Direct loss (Ours) 0.8708 

CE + 3D Size ∗∗ Lagrangian Proposals ( Pathak et al., 2015a ) N/A 

Partial CE + 3D Size ∗∗ Direct loss (Ours) 0.8580 

Fully supervised Cross-entropy 0.8872 

∗ Common bounds. 
∗∗ Individual bounds. 

Table 2 

Ablation study on the amounts of fully and weakly labeled data. We report the mean DSC of all the testing 

cases, for all the settings and using the same architecture. 

Name Training approach # Fully/Weakly annotated images DSC 

Weak_All Weak supervision ∗ 0/150 0.8004 

Full_5 Full supervision 5/0 0.5434 

Hybrid_5 Full + weak supervision ∗ 5/145 0.8386 

Full_10 Full supervision 10/0 0.6004 

Hybrid_10 Full + weak supervision ∗ 10/140 0.8475 

Full_25 Full supervision 25/0 0.7680 

Hybrid_25 Full + weak supervision ∗ 25/125 0.8641 

Full_All Full supervision 150/0 0.8872 

∗ Common bounds. 

Fig. 3. Evolution of the DSC during training for the left-ventricle validation set, including the weakly supervised learning models and different strategies analyzed, with also 

the full-supervision setting. As tags and common bounds achieve similar results, we plot only common bounds for better readability. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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the network is trained with conflicting information – i.e., similar-

looking patches are both foreground and background according the

synthetic ground truth – and is not able to recover from those ini-

tial mis-classifications. 

3D segmentation . Constraining the size of the 3D volume of the

target region also shows the benefit of our penalty approach, yield-

ing a mean DSC of 0.8580. Recall that, here, we are using less su-

pervision than the 2D case. Since we do not use tag information

in this case, these results suggest that only a fraction of all the

slices may be used when creating the labels, allowing annotators

to scribble the 3D image directly instead of going through all the

2D slices one by one. 

5.2. Hybrid training: Mixing fully and weakly annotated images 

Table 2 and Fig. 4 summarize the results obtained when com-

bining weak and full supervision. First, and as expected, we can
bserve that adding n fully annotated images to the training set

Hybrid _ n ) improves the performances in comparison to the model

rained solely with the weakly annotated images, i.e., Weak _ All.

articularly, the DSC increases by 4%,5% and 6% when n is equal

o 5,10 and 25, respectively, approaching the full-supervision per-

ormance with only 25% of the fully labeled images. 

Nevertheless, it is more interesting to see the impact of adding

eakly annotated images (i.e., Hybrid _ n ) to a model trained solely

ith fully labeled images (i.e., Full _ n ). From the results, we can

bserve that adding weakly annotated images to the training set

ignificantly increases the performance, particularly when the

mount of fully annotated images (i.e., n ) is limited. For instance,

n the case of n equal to 5, adding weakly annotated images en-

anced the performance by more than 30% in comparison to full

upervision with n equal to 5. Despite the fact that this gap de-

reases with the number of fully annotated images, the difference

etween both settings (i.e., Full and Hybrid) remains significant.

ore interestingly, training the same model with a high amount
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Fig. 4. Mean DSC values over the number of fully annotated patients employed for training. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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Table 3 

Mean Dice scores (DSC) for several degrees of supervision, using the 

vertebral-body and prostate validation sets. Bold font indicates the best 

weakly supervised setting for each data set. 

Method Vertebral body DSC Prostate DSC 

Partial CE 0.1155 0.0320 

Partial CE + Tags 0.5597 0.6911 

Partial CE + Tags + Common size 0.7900 0.7214 

Partial CE + Tags + Individual size 0.8604 0.8298 

Fully supervised 0.8999 0.8911 
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f weakly annotated images and no or a very reduced set of

ully labeled images (for example Weak _ All or Hybrid _ 5) achieves

etter performances than employing datasets with much higher

umbers of fully labeled images, e.g, Full _ 25. 

These results suggest that a good strategy when annotating a

ew dataset might be to start with weak labels for all the images,

nd progressively complete full annotations, should resources be-

ome available. 

.3. MR-T2 vertebral body and prostate segmentation 

The results obtained for the vertebral-body dataset ( Table 3 )

ighlight well the differences in the performances of different

evels of supervision. Using tag bounds produces a network that

oughly locates the object of interest (DSC of 0.5597), but fails to

dentify its boundaries (as seen in Fig. 6 , third column ). Employ-

ng the common size strategy achieves satisfactory results for the

lices containing objects with a regular shape but still fails when

ore difficult/irregular targets are present, resulting in an over-

ll improvement of DSC (0.7900). However, when using individual

ounds, the network is able to satisfactory segment even the most

ifficult cases, obtaining a DSC of 0.8604, only 3% lower than full

upervision. 

For the prostate dataset, one can observe that common

ounds still improve the results obtained with tags ( +3% ), but

he difference is much smaller than the case of vertebral-body

egmentation. Using individual bounds increases the DSC value by

0%, reaching 0.8298, a behaviour similar to what we observed

arlier for the other datasets. Nevertheless, in this case, the

ap between full and weak supervision with individual bounds

onstraints is larger than what we obtained for the other datasets. 

.4. Qualitative results 

To gain some intuition on different learning strategies and their

mpact on the segmentation, we visualize some results sampled

rom the validation sets in Figs. 5–7 for LV, VB and prostate, re-

pectively. 

V segmentation task. We compare 4 methods to the ground truth:

ull supervision, Lagrangian proposals ( Pathak et al., 2015a ) with

ommon bounds, direct loss with common bounds and direct loss
ith individual bounds. We can see that, for the easy cases con-

aining regular shapes and visible borders, all methods obtain sim-

lar results. However, the methods employing common bounds can

asily over-segment the object, especially when their size is con-

iderably smaller; see for example the last row in Fig. 5 . Since in-

ividual bounds are specific to each image, a model trained with

hese bounds will not suffer in such cases, as shown in the figure. 

ertebral-body segmentation task. In this case, we visualize the

esults of full supervision, tag bounds, common bounds and in-

ividual bounds. In line with results reported in Table 3 , we can

isually observe the gap in performances between each setting,

hich clearly highlights the impact of the different values of

he bounds during the optimization process. Using only tags, the

etwork learn to roughly locate the object. When size bounds

re included as common size information, the network is able to

omehow learn the boundaries, but only for object shapes that are

ithin the standard variability of a typical vertebral body shape.

s it can be observed, the model fails to segment the unusual

hapes (last three rows in Fig. 6 ). Lastly, a network trained with

ndividual sizes is able to better handle those cases, while still

eing imprecise on some regions. 

rostate segmentation task. As in the previous case, we depict

he results of full supervision, tag bounds, common bounds and

ndividual bounds. Both the tags and common bounds locate the

bject in a similar fashion, but both have difficulties finding a

recise contour, typically over-segmenting the target region. This

s easily explained by the variability of the organ and the very

ow contrast on some images. As shown in the last column, using

ndividual bounds greatly improves the results. 
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Fig. 5. Qualitative comparison of the different methods using examples from the LV dataset. Each column depicts segmentations obtained by different methods, whereas 

each row represents a 2D slice from different scans (Best viewed in colors). (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 6. Qualitative comparison using examples from the VB dataset. Each column depicts segmentations obtained by different levels of supervision, whereas each row 

represents a 2D slice from different scans (Best viewed in colors). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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5.5. Sensitivity to the constraint boundaries 

In this section, an ablation study is performed on the lower

and upper bounds when using common bounds, and investigate

their effect on the performance on the vertebral-body segmenta-

tion task. Results for different bounds are reported in Table 4 . It
an be observed that progressively increasing the value of the up-

er bound decreases the performance. For example, the DSC drops

y nearly 12% and 16% when the upper bound is increased by a

actor of 5 and 10, respectively. Decreasing the lower bound from

0 to 0 has a much smaller impact than the upper bound, with

 constant drop of less than 1%. These findings are aligned with
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Fig. 7. Qualitative comparison of the different levels of supervision. Each row represents a 2D slice from different scans. (Best viewed in colors). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 

Ablation study on the lower and upper bounds of the size constraint 

using the vertebral body dataset. 

Bounds Mean DSC 

Model Lower (a) Upper (b) 

Weak Sup. w/ direct loss 0.9 τ Y 1.1 τ Y 0.8604 

Weak Sup. w/ direct loss 80 1100 0.7900 

Weak Sup. w/ direct loss 80 50 0 0 0.6704 

Weak Sup. w/ direct loss 80 10,0 0 0 0.6349 

Weak Sup. w/ direct loss 0 1100 0.7820 

Weak Sup. w/ direct loss 0 50 0 0 0.6694 

Weak Sup. w/ direct loss 0 10,0 0 0 0.6255 

Weak Sup. w/ direct loss 0 65,536 0.5597 
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Table 5 

Training times for the diverse supervised learning strategies with a batch size 

of 1, using tags and size constraints. 

Method Training time (ms/batch) 

Partial CE 112 

Direct loss (1 bound) 113 

Direct loss (2 bounds) 113 

Lagrangian proposals (1 bound) 610 

Lagrangian proposals (2 bounds) 675 

Lagrangian proposals (1 bound), w/ early stop 221 

Lagrangian proposals (2 bounds), w/ early stop 220 

Fully supervised 112 
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t  
isual predictions illustrated in Fig. 6 . While a network trained

nly with tag bounds tends to over-segment, adding an up-

er bound easily fixes the over-segmentation, correcting most

f the mistakes. Nevertheless, for the same reason, i.e., over-

egmentation, very few slices benefit from a lower bound. 

.6. Efficiency 

In this section, we compare the several learning approaches in

erms of efficiency ( Table 5 ). Both the weakly supervised partial
ross-entropy and the fully supervised model need to compute

nly one loss per pass. This is reflected in the lowest training

imes reported in the table. Including the size loss does not add

o the computational time, as can be seen in these results. As ex-

ected, the iterative process introduced by Pathak et al. (2015a) at

ach forward pass adds a significant overhead during training.

o generate their synthetic ground truth, they need to optimize

he Lagrangian function with respect to its dual variables (La-

range multipliers of the constraints), which requires alternating

etween training a CNN and Lagrangian-dual optimization. Even in

he simplest optimization case (with only one constraint), where
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8 Notice that the mean of intensity within the target region can be represented 

with network output using general form (8) , with f p corresponding to the intensity 

of pixel p . 
9 In fact, a similar hypothesis was made in Márquez-Neila et al. (2017) to explain 

the negative results of Lagrangian optimization in the case of equality constraints. 
optimization over the dual variable converges rapidly, their method

remains two times slower than ours. Without the early stopping

criteria that we introduced, the overhead is much worse with

a six-fold slowdown. In addition, their method also slows down

when more constraints are added. This is particularly significant

when there is many classes to constrain/supervise. 

Generating the proposals at each iteration also makes it much

more difficult to build an efficient implementation for larger batch

sizes. One either needs to generate them one by one (so the

overhead grows linearly with the batch size) or try to perform it

in parallel. However, due to the nature of GPU design, the parallel

Lagrangian optimizations will slow each other down, meaning that

there may be limited improvements over a sequential generation.

In some cases it may be faster to perform it on CPU (where the

cores can truly perform independent tasks in parallel), at the cost

of slow transfers between GPU and CPU. The optimal strategy

would depend on the batch size and the host machine, especially

its available GPU, number of CPU cores and bus frequency. 

6. Discussion 

We have presented a method to train deep CNNs with linear

constraints in weakly supervised segmentation. To this end, we

introduce a differentiable term, which enforces inequality con-

straints directly in the loss function, avoiding expensive Lagrangian

dual iterates and proposal generation. 

Results have demonstrated that leveraging the power of weakly

annotated data with the proposed direct size loss is highly ben-

eficial, particularly when limited full annotated data is available.

This could be explained by the fact that the network is already

trained properly when a large fully annotated training set is

available, which is in line with the values reported in Table 2 .

Similar findings were reported in ( Bai et al., 2017; Zhou et al.,

2018 ), where authors exhibited an increased of performance when

including non-annotated images in a semi-supervised setting. This

suggests that including more unlabelled or weakly labelled data

can potentially lead to significantly improvements in performance. 

Findings from experiments across different segmentation tasks

indicate that highly competitive performance can be obtained with

a rough estimation of the target size. This is especially the case on

well structured problems where the size and/or shape of the ob-

ject remains consistent across subjects. If more precise size bounds

are provided, the proposed approach is able to reach performances

close to full supervision, even when the size and shape variability

across subjects is large. For difficult tasks, where the gap between

our approach and full supervision is larger, such as prostate

segmentation, including an unsupervised regularization loss ( Tang

et al., 2018a; 2018b ) to encourage pairwise consistencies between

pixels may boost the performance of the proposed strategy. A note-

worthy point is the robustness of our method to the weak-label

generation. While the weak labels were generated from a ground-

truth erosion for the first dataset, with seeds always in the center

of the target region, they were randomly generated and placed for

the other two datasets. Thus, the results showed consistency in the

behaviour of the different methods, regardless of the strategy used.

Even though the proposed method has been shown to provide

good generalization capabilities across three different applications,

the segmentation of images with severe abnormalities, whose sizes

largely differ from those seen in the training set, has not been as-

sessed. Nevertheless, the ablation study performed on the values

of the size bounds, and the results obtained with common bound

sizes suggest that the proposed approach may perform satisfacto-

rily in the presence of these severe abnormalities, by simply in-

creasing the upper bound value. In addition, if a greater ‘precise’

estimation of the abnormality size is given, our proposed loss may

improve segmentation performance, as demonstrated by the re-
ults achieved by the individual bounds strategy. It is important

o note that, even in the case of full supervision, if a new testing

mage contains a severe abnormality much larger than the objects

een during the training phase, the network will likely to poorly

egment the region of interest. 

Our framework can be easily extended to other non-linear (frac-

ional) constraints, e.g., invariant shape moments ( Klodt and Cre-

ers, 2011 ) or other statistics such as the mean of intensities

ithin the target regions ( Lim et al., 2014 ). For instance, a nor-

alized (scale invariant) shape moment of a target region can be

irectly expressed in term of network outputs using the following

eneral fractional form: 

 S = 

∑ 

p∈ � f p S p ∑ 

p∈ � S p 
(8)

here f p is a unary potential expressed in term of exponents

f pixel/voxel coordinates. For example, the coordinates of the

enter of mass of the target region are particular cases of (8) and

orrespond to first-order scale-invariant shape moments. In this

ase, potentials f p correspond to pixel coordinates. Now, assume a

eak-supervision scenario in which we have a rough localization

f the centroid of the target region. In this case, instead of a

onstraint on size representation V S as in Eq. (3) , one can use a

ue on centroid as follows: a � F S � b . This can be embedded as a

irect loss using differentiable penalty C(F S ) . Of course, here, F S is

 non-linear fractional term unlike region size. Therefore, in future

ork, it would be interesting to examine the behaviour of such

ractional terms for constraining deep CNNs with a penalty ap-

roach. Finally, it is worth noting that the general form in Eq. (8) is

ot confined to shape moments. For instance, the image (intensity)

tatistics within the target region, such as the mean, 8 follow the

ame general form in (8) . Therefore, a similar approach could be

sed in cases where we have prior knowledge on such image

tatistics. 

Our direct penalty-based approach for inequality constraints

ields a considerable increase in performance with respect to

agrangian-dual optimization ( Pathak et al., 2015a ), while being

aster and more stable. We hypothesize that this is due, in part,

o the interplay between stochastic optimization (e.g., stochastic

radient descent) for the primal and the iterates/projections for

he Lagrangian dual. 9 Such dual iterates/projections are basic (non-

tochastic) gradient methods for handling the constraints. Basic

radient methods have well-known issues with deep networks,

.g., they are sensitive to the learning rate and prone to weak

ocal minima. Therefore, the dual part in Lagrangian optimization

ight obstruct the practical and theoretical benefits of stochastic

ptimization (e.g., speed and strong generalization performance),

hich are widely established for unconstrained deep network

osses ( Hardt et al., 2016 ). Our penalty-based approach trans-

orms a constrained problem into an unconstrained loss, thereby

andling the constraints fully within stochastic optimization

nd avoiding completely the dual steps. While penalty-based

pproaches do not guarantee constraint satisfaction, our work

howed that they can be extremely useful in the context of

onstrained CNN segmentation. 

. Conclusion 

In this paper, a novel loss function is present for weakly super-

ised image segmentation, which, despite its simplicity, performs
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ignificantly better than Lagrangian optimization for this task. We

chieve results close to full supervision by annotating only a small

raction of the pixels, across three different tasks, and with neg-

igible computation overhead. While our experiments focused on

asic linear constraints such as the target-region size and im-

ge tags, our direct constrained-CNN loss can be easily extended

o other non-linear constraints, e.g., invariant shape moments

 Klodt and Cremers, 2011 ) or other region statistics ( Lim et al.,

014 ). Therefore, it has the potential to close the gap between

eakly and fully supervised learning in semantic medical image

egmentation. 
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