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Abstract: This paper provides new delay-range-dependent stability criteria in the forms of LMIs 

for systems with interval time-varying delays. Two cases concerning whether the derivative of the 

time delay is known are studied. A new estimation method is developed to estimate the nonlinear 

time-varying coefficients derived from Jenson’s integral inequality more tightly than the existing 

ones. Along with convex combination and delay partitioning method, less conservative stability 

criteria are provided by utilizing the new estimation method. Numerical examples are given to 

illustrate the effectiveness of the proposed method. 
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1. Introduction 

Time delay is encountered in many dynamic systems such as networked control systems, 

neutral networks and process control systems. In practical industrial systems, factors like the 

transmission of signals may lead to time delay. During the past few decades, much effort has been 

paid to the stability analysis of time-delay systems. It is generally accepted that delay-dependent 

stability criterion is less conservative than delay-independent ones especially when the size of the 

delay is small; so much attention has been paid to the study of delay-dependent stability criteria, 

see [1,2] for example. 

There are four commonly used techniques to obtain delay-dependent stability criteria. They 

include the model transformation, the bounding inequalities of the cross terms and integral terms, 



the free-weighting matrices method, and the convex combination method. The basic principle of 

the model transformation method is to utilize the Newton-Leibniz formula to transform discrete 

delay of the system into distributed delay. Firdman et al. summarized four model transformation 

methods of linear time-invariant delay system in [1]. The bounding techniques of the cross terms 

and integral terms in the derivatives of the Lyapunov-Krasovskii functional (LKF) are widely 

investigated, including Park inequality [3], Moon inequality [4] and Jeson’s inequality [5]. Some 

other inequalities (C. Peng et al. [6]) have been employed to deal with the triple integral terms in 

the derivative of the LKF by Sun in [7, 8].The free-weighting matrices method is proposed by He 

et al. [9]. By utilizing the Newton-Leibniz formula, free-weighting matrices are introduced into 

the derivative of the Lyapunov functional to reduce the conservatism led by model transformation 

and matrix inequalities. Combining the free weighting matrices method with different kinds of 

LKF, better stability criteria is derived, see for examples in [10-11]. However, this method 

increases the computational complexity since many slack variables are added into the LMIs. The 

convex combination method has been introduced in [12, 13] to obtain some less conservative 

stability results. 
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which leaves some room for improvement. In this paper, by introducing an additional 
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, a tighter bound of the nonlinear 

time-varying coefficients can be obtained so that less conservative stability criteria are derived for 

two cases concerning whether the derivative of the time delay is known or not. The stability 

criteria are in the forms of LMIs, by solving which the admissible bounds of the time-varying 

delay can be obtained. Numerical examples are given to demonstrate the effectiveness of the 

proposed method.  

The organization of the remaining part is as follows. In Section 2, some lemmas used in this 

paper are presented. In Section 3, the main result is established. In Section4, numerical simulation 

examples are given for illustration. Finally, conclusions are stated in Section 5. 

2. Problem formulation and preliminaries 

Consider the following linear system with time-varying delay, 
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where ntx ℜ∈)(  is the state vector; the initial condition )(tφ  is a continuously differentiable 

vector-valued function; nnA ×ℜ∈ and nnA ×ℜ∈1 are constant system matrices; )(tτ  is a 

time-varying differentiable function which satisfies 

21 )(0 hth ≤≤≤ τ ,                                 (2) 

and 

µτ ≤)(t ,                                                                 (3) 

where 210 hh <≤ , and µ≤0 are constants. 



Let 1212 hhh −= . The following lemmas are introduced which are important in the 

derivation of the main result. 

Lemma 1. (Jenson’s Inequality [5]) Suppose 21 )(0 hth ≤≤≤ τ  and ntx ℜ∈)( , for any 

positive matrix nnR ×ℜ∈ , the following inequality holds,  
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From Fig. 1, it is obvious that the estimation method developed in this paper gets a tighter 

bound of 
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+ . When the numbers of subintervals increases, the estimation 

approaches the true value. 

 

3. Main results 

Now it is ready to investigate the stability problem of system (1). 



Theorem 1. Given scalars 210 hh <≤ , µ≤0 , and positive integer 1≥N , the system (1) with 

a time varying delay is asymptotically stable if there exist matrices 0>P , 0>iQ , 3,2,1=i , 

0>jZ , 2,1=j  with appropriate dimensions such that the following LMIs hold.  
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Proof. Construct a Lyapunov functional as  
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In conclusion, if 01 <iφ  and 02 <iφ , then 0),( <txtV . This completes the proof.      

 

Now we will prove that Theorem 1 is less conservative than Theorem 1 in [13], which is 

rewritten as follows. 

Theorem 2 ([13]). Given scalars 210 hh <≤ , µ≤0 , and positive integer 1≥N , the system 
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For Theorem 1 and Theorem 2, the following conclusion can be drawn. 

Theorem 3. If there exist matrices 0>P , 0>iQ , 3,2,1=i , 0>jZ , 2,1=j  with 

appropriate dimensions such that (21)-(22)hold, then the matrices P , iQ , 3,2,1=i , jZ , 

2,1=j , are feasible solutions to (5)-(6). 

Proof. Suppose that there exist matrices 0>P , 0>iQ , 3,2,1=i , 0>jZ , 2,1=j  with 
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It is obvious that 11ˆ ii γγ ≤ , so the matrices P , iQ , 3,2,1=i , jZ , 2,1=j  are feasible 

solutions to (5)-(6).                                                           

From Theorem 3, it is easy to see that by Lemma 2, the term 
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 is introduced and thus Theorem 1 is less 

conservative than Theorem 2. 

When the delay derivative is unknown or does not exist, the following result can be derived 

from Theorem 1 by setting 03 =Q . 

Theorem 4. Given scalars 210 hh <≤ , µ≤0 , and positive integer 1≥N , the system (1) with 

a time varying delay is asymptotically stable if there exist matrices 0>P , 0>iQ , 2,1=i , 

0>jZ , 2,1=j  with appropriate dimensions such that the following LMIs hold.  
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Remark 2. From Theorem 1 and Theorem 4, we can get the admissible upper bound 2h of the 

time delay for a certain lower bound 1h of the time delay by solving the following maximum 

problem. 

   Max 2h  subject to LMIs (5)-(6) in Theorem 1 or (23)-(24) in Theorem 4 respectively. 

Note that Theorem 1 and Theorem 4 assume the existence of matrices P, Q and Z. If 2h  

exceeds the admissible upper bound, matrices P, Q and Z do not exist, which means there is no 

solution to corresponding LMIs. 

4. Numerical Examples 

In this section, we use examples in Zhu et al. [13] to illustrate the advantages of the proposed 

stability results. The maximum problem in Remark 2 is solved and numerical results are obtained 

by using LMI SOLVER FEASP in MATLAB LMI Toolbox [14]. 

Example 1. Consider the system (1) with 
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In order to make a comparison, we employ the stability criteria given in [8], [12-13] and in 

Theorem 1 and 4 in this paper. When the derivative of delay is available, for the lower bound 

01 =h , the admissible upper bounds 2h  of the time-varying delay are obtained for varies 

maximum delay derivative µ  and the computational results are shown in Table 1. When the 

derivative of delay is unknown or doesn’t exist, for varies lower bound 1h , the admissible upper 



bounds 2h  are obtained and shown in Table 2. In Table 3, the computational complexity of the 

methods proposed in [8], [12], [13] and this paper are studied. 

Table 1. Admissible upper bounds 2h  with varying µ  and 01 =h  

Method µ  0.1 0.3 0.5 0.8 1 

Shao[12] 
2h  5.463 2.216 1.127 0.871 0.871 

Sun[8] 
2h  5.4764 2.2160 1.1272 0.8714 0.8714 

Zhu[13](N=1) 
2h  5.466 2.236 1.154 0.929 0.929 

Theorem 1(N=1) 
2h  5.466 2.236 1.154 0.929 0.929 

Zhu[13](N=2) 
2h  5.469 2.26 1.179 0.98 0.98 

Theorem 1(N=2) 
2h  5.475 2.278 1.202 1.005 1.005 

Zhu[13](N=4) 
2h  5.478 2.285 1.208 1.02 1.02 

Theorem 1(N=4) 
2h  5.494 2.307 1.233 1.044 1.044 

 

Table 2. Admissible upper bounds 2h  with varying 1h  and unknown µ  

Method 
1h  0.3 0.5 0.8 1 

Shao[12] 
2h  1.0715 1.2191 1.4539 1.6169 

Sun[8] 
2h  1.0716 1.2196 1.4552 1.6189 

Zhu[13](N=1) 
2h  1.1232 1.2672 1.4974 1.6578 

Theorem 4(N=1) 
2h  1.1232 1.2672 1.4974 1.6578 

Zhu[13](N=2) 
2h  1.1677 1.3078 1.5333 1.6910 

Theorem 4(N=2) 
2h  1.1907 1.3303 1.555 1.7124 



Zhu[13](N=4) 
2h  1.2043 1.3429 1.5663 1.7228 

Theorem 4(N=4) 
2h  1.2246 1.3619 1.5838 1.739 

 

Table 3. A study of the computational complexity of the proposed method over the existing 

methods (when the derivative of the time delay is known) 

Method LMI 

 

LMI Count LMI size 

Shao[12] 6 2 44×  

Sun[8] 26 2 99×  

Zhu[13] 6 N×2  44×  

Theorem 1 6 N×2  44×  

 

It can be seen from Table 1 and Table 2 that the stability results obtained in this paper are less 

conservative that those in [8], [12] and [13]. From Table 3, it can be seen that the reduced 

conservativeness does not bring about additional computational complexity compared with [13].  

 

Example 2. Consider the system (1) with 
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As with Example 1, here we calculate the admissible upper bound of the time delay that 

guarantees the asymptotic stability of system (1) using the methods proposed in [8], [12], [13], and 

Theorem 1 and Theorem 4 in this paper. For unknown maximum derivative µ of the time delay 

and varying lower bound 1h of the time delay , the admissible upper bounds 2h  of the 

time-varying delay are obtained and shown in Table 4. 

Table 4. Admissible upper bounds 2h  with varying 1h  and unknown µ  



Method 
1h  1 2 3 4 

Shao[12] 
2h  1.8737 2.5048 3.2591 4.0744 

Sun[8] 
2h  1.9008 2.5663 3.3408 4.169 

Zhu[13](N=1) 
2h  1.9422 2.5383 3.2749 4.0787 

Theorem 4(N=1) 
2h  1.9422 2.5383 3.2749 4.0787 

Zhu[13](N=2) 
2h  2.004 2.5650 3.2866 4.0818 

Theorem 4(N=2) 
2h  2.0089 2.5829 3.2983 4.0848 

Zhu[13](N=4) 
2h  2.0273 2.5915 3.3010 4.0855 

Theorem 4(N=4) 
2h  2.0448 2.6051 3.3098 4.0877 

For most of the cases, the obtained criteria have been shown to be less conservative than the 

existing ones in [8], [12-13]. Note that when the lower bound of the time delay is large (when 

1h =3 or 4 as shown in Table 4), the results obtained by Theorem 4 fail to compete with that of [8]. 

We intend to improve further the criteria in this paper to prevail completely the existing stability 

criteria for all the situations. 

 

5. Conclusions 

In this paper, delay-range-dependent stability criteria have been developed for a linear system 

with interval time-varying delay. By developing a new method to estimate the nonlinear 

time-varying coefficients derived from Jenson’s integral inequality more tightly, less conservative 

stability criteria are derived by employing convex combination and delay partitioning method. The 

advantage of the criterion lies in its simplicity and less conservatism. Examples are also given to 

illustrate the reduced conservatism of the stability results. 
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