CSE 185 Introduction to Computer Vision Lecture 2: Camera Model

Why is the origin of the word camera?

\square In Latin camera meant room, and usually a room with a vaulted ceiling.
\square How is camera related to a room?

Camera obscura (a.k.a dark room)

From James Ayscough's A short account of the eye and nature of vision (1755 fourth edition)

Let's design a camera

\square Put a piece of film in front of an object Do we get a reasonable image?

Pinhole camera

-Add a barrier to block off most of the rays
\square This reduce blurring
The opening known as the aperture DHow does this transform the image?

Distant objects are smaller

Shrinking the aperture

\square Why not make the aperture as small as possible?
\square Less light gets through
\square Diffraction effect

Shrinking the aperture

UCMERGED

Light wave diffraction

aDiffraction is the bending of waves around the corners of an obstacle or through an aperture.

"silver lining" in clouds

The reason for lenses

A lense focuses light onto a film

\square There is a specific depth at which objects are "in focus" \square Other points project to a "circle of confusion" in the image
\square Changing image distance changes this depth

Focal length

\square Lens' focal length is image distance where objects at infinity appear in focus
\square Focal length depends on lens' construction (e.g. surface radius). Some lenses may allow changing their focal length (typically, these are multi-lens constructions)

Basic lens camera

image

 planelens

UCMERGED

M

Basic lens camera

 imageplane

UCMERGED

Basic lens camera

image plane

UOMERGED

Basic lens camera

image plane
lens

N

Basic lens camera

image

 plane
lens

M

Basic lens camera

image plane

lens

M

Basic camera model

image plane

NOTE:

for pin hole camera model "focal length" (f) is defined as image distance (to the "hole").
As mentioned earlier, focal length of a lens does not have to be equal to the image distance (to the lens).

UCMERGED

Basic camera model: "pin hole"

Basic camera model: "pin hole"

Simplified camera representation: image plane is drawn in front of the optical center.
We will use such "pin hole" camera model later in the course.

Projective Geometry (from 3D point to 2d Pixel)

Consider a simple example of so-called camera-centered 3D world coordinate system (x, y, z):

- world coordinate system center $(0,0,0)$ is at optical center C
- $x-y$ plane is parallel to the image plane
- $\quad x$ and y axis parallel to u and v axis of the image coordinate system
- axis z (called optical axis) intersects image at its coordinate center $(0,0)$

Projective Geometry (from 3D point to 2d Pixel)

First, consider arbitrary world point

It projects onto some image point/pixel $(u, 0)$ on axis u (by construction, intersection of $x-z$ plane with the image plane is axis u)

UCMERGED

Projective Geometry (from 3D point to 2d Pixel)

For a general point (x, y, z) in 3D

Simple observation: size of any 3D object image is inversely proportional to object's distance from the camera (z-coordinate value)

UCMERGED

The eye

\square The human eye is a camera
\square Iris - colored annulus with radial muscles
\square Pupil - the hole (aperture) whose size is controlled by iris \square What's the film?

Digital camera

\square A digital camera replaces film with a sensor array
\square Each cell in the array is a Charge Coupled Device (CCD)
\square light-sensitive diode that converts photons to electrons
\square Complementary Metal Oxide on Silicon (CMOS) sensor \square CMOS is becoming more popular

Image sensing pipeline

A simple camera pipeline
M

Gray－scale image

－	$\underline{\square}$	玉	욜	¢	\％	9	\pm	용	ส	\％	ส	$\stackrel{\square}{\text {－}}$	－	${ }^{*}$	（
9	을	g	8	F	\％	\％	\＄	\pm	8	\pm	告	\％	哭	7	\％
$\underline{\square}$	ํ．	8	\because	5	\＄	R	5	8	7	\％	5	8	$\stackrel{\text { cid }}{ }$	罢	\％
E	O	T	$\underline{8}$	＊	（	畳	5	童	ส	R	\％	\cdots	\bullet	8	$\underline{\sim}$
$\underline{5}$	\cdots	\％	${ }^{\text {z }}$	\％	\％	8	$=$	7	E	品	S	8	0	8	8
	\％		搨	\％	处	E	吝	R	？	\％	＊	4	7	$\underline{\square}$	ม
$\underline{2}$	9	\bullet	三	\％	\＃	$\stackrel{\square}{\square}$	\pm	矢	ล	¢	ํ	7	5	－	\＃
g	R	\pm	玉	ล	3	边		（	号	先	＊	8	－	－	E
9	Σ	\pm	む	可	\％	8	z	2	a	ఖ	\％	3	R	\％	$\stackrel{8}{8}$
ミ	2	8	∞	E	合	E	9	玉	๕	\cong	\＃	E	粦	ิ	（
$\underline{2}$	㗊	믈	8	5	8	\％	5	9	E	$\stackrel{\square}{\text { ¢ }}$	ส	－	※	\％	8
E	$\stackrel{8}{9}$	g	\％	き	E	※	g	2	8	品	안	온	包	$\underline{2}$	\％

\square Gray scale：0－255
\square Usually normalized between 0 and 1 （dividing by 255）and convert it into a vector for processing

Color image

Original Color Image

Matlab RCB Matrix

Image as functions $f(x, y): \mathcal{R}^{2} \rightarrow \mathcal{R}$

