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CSE 185 Introduction to Computer Vision
Lecture 3: Image Processing

Slides credit: Yuri Boykov, Ming-Hsuan Yang, Boqging Gong,
Richard Szeliski, Steve Seitz, Alyosha Efros, Fei-Fei Li, etc.



|mage PrOCESSing \

JAn image processing operation defines a new image g in terms
of an existing image f

Geometric (domain) transformations:
g(x,y) = f(t,(x,y)1,(x,))

ange transformation:
glx,y)=t(f(x,y)) point processing

A Filtering also generates new images from an existing image

g(x,y)= j h(u,v)- f(x—u,y—v)-du-dv

lu|<e
lv|<e

neighborho ocessing




Point prOCGSSing \

image image
range range
g(x,y)=t(f(x,»)) t: R— R

for each original image intensity value / function t(:)
returns a transformed intensity value t(l).

B NOTE: we will often use

[ — t([) notation /, instead of f(x,y) to
denote intensity at pixel p=(x,y)

J Important: every pixel is for itself
- spatial information is ignored!

(J What can point processing do?

(we will focus on grey scale images, see Szeliski 3.1 for examples of point processing for color images)




Example of gray-scale transformation t
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Point processing: negative

ab

FIGURE 3.4

(a) Original
digital
mammogram.

(b) Negative
image obtained
using the negative
transformation in
Eq. (3.2-1).
(Courtesy of G.E.
Medical Systems.)

]P or f(xay) ]’p or g(xay)

t(1)=255-1

g(x,y)=t(f(x,y))=255-f(x,y)



Power-law transformations t

L -1 S FIGURE 3.6 Plots
j of the equation
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Image enhancement via gamma correction

ab
¢ d

FIGURE 3.9

(a) Aerial image.
(b)—(d) Results of
applying the
transformation in
Eq. (3.2-3) with

¢ =1and

vy = 3.0.4.0.and
5.0, respectively.
(Original image
for this example
courtesy of
NASA))




Image histogram

I I I I 1 T I I

Dark image [Low-contrast image

Ill | 1 |

Bright image High-contrast image

1 1 1 1

Image Brightness Image Contrast

. : L : Nn.  ---number of pixels with intensity i
probability of intensityi:  p(i) = —+
n  --—-total number of pixels in the image




Contrast stretching
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HiStOgram equa|i2ati0n \

]

t(i) = Zp(j) = Z’% = cumulative distribution
=0

=0 of image intensities




HiStOgram equa|i2ation \

Original images




Histogram equalization

Original images Histogram corrected images




Histogram equalization

FIGURE 3.18 1.00
Transformation
functions (1)
through (4) were
obtained from the
histograms of the
images in
Fig.3.17(a), using
Eq. (3.3-8).
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= cumulative distribution
of image intensities
...see Gonzalez and Woods, Sec3.3.1, for more details



HiStOgram equalization \

t(i)y=) p(j)=) -~ = cumulative distribution
Z Z_: of image intensities

Q: Why does that work?

Answer in probability theory:

I—random variable with probability distribution p(7) over j in [0, 1]
If {(7) is a cumulative distribution of 7 then
I'=t(I) —is a random variable with uniform distribution over its range [0,1]

That is, transform image 7” will have a uniformly-spread histogram (good contrast)




Histogram equalization for continuous case

s From basic probability theory

p(f) LT (f)

m Consider the transformation function

¢=T(f)=[ p,(a)da

= Then... /d_f_pf(f)

n@-[nOL] -

|
Jf 77'(g)

slide from Bernd Girod

oG
=T7'(g)
0< f<I
—| =1 0<g<l1
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https://web.stanford.edu/class/ee368/Handouts/Lectures/2019_Winter/4-Histograms.pdf

Histogram equalization example

Original image Bay ... after histogram equalization

slide from Bernd Girod



https://web.stanford.edu/class/ee368/Handouts/Lectures/2019_Winter/4-Histograms.pdf

Histogram equalization example

Original image Bay .. . after histogram equalization
4 4
4% 10 . . 4% 10
3 3
o
% 2
a
S
1- | |l| ‘
% 100 200 % 100 200
Gray level Gray level

slide from Bernd Girod



https://web.stanford.edu/class/ee368/Handouts/Lectures/2019_Winter/4-Histograms.pdf

From point to neighborhood proceh

point processing: g(x,y)=t(f(x,y))

neighborhood processing: g(x,y)= '[ h(u,v): f(x—u,y—v)-du-dv

lu|<e
lv|<e



2D Convolution \

A 2D image f[i,j] can be filtered by a 2D kernel h[u,v] to produce
an output image g/i,j]:

ko k
gli,jl1= 2, >, hluv]- fli+u, j+V]
u=—=k v=—=k
This is called a operation and written:

g=hof

h is called “kernel” or “mask” or “filter” which
representing a given “window function”




2D filtering for noise reduction

O Common types of noise:

 Salt and pepper noise:
random occurrences of
black and white pixels

O Impulse noise: random
occurrences of white pixels

J Gaussian noise: variations in
intensity drawn from a
Gaussian normal distribution

-

Impulse noise

Gaussian noise



Mean filtering
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Mean filtering
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Mean filtering
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Gaussian Salt and pepper
noise noise

Mean filtering

Sx5

TxX7




JWhat’s the kernel for a 3x3 mean filter?

0l0]o90]90l90[90[90] 0] 0
00/ o90]90l90[90[90] 0] 0
0l0]o90]90l90][90[90] 0] 0
0lo]o9]090]9090]0]0
0l0]o90]90l90][90[90] 0] 0
ofoTolololololo]o]o
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Gaussian filtering
JA Gaussian kernel gives less weight to pixels further

0100 010
0100 010
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0100 0 010
010 (90 0 010
0100 0 010

\

from the center

discrete approximation of
a Gaussian (density) function

1wt
h(u,v)=2m_2€ o

O NOTE: Gaussian distribution is a synonym for Normal distribution!




Gaussian filtering
JA Gaussian kernel gives less weight to pixels further
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discrete approxi(?nation of
a Gaussian (density) function

1 a2
h(u,v) = L o2

We denote such Gaussian kernels by G or G




Mean vs Gaussian filtering \

no rotational invariance




Median filter \

JA Median Filter operates over a window by selecting
the median intensity in the window.

JWhat advantage does a median filter have over a
mean filter?

Is a median filter a kind of convolution?

M - No, median filter is non-linear




Gaussian Median

Comparison:
salt and pepper
noise

A3
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Edge detection \

JThe purpose of Edge Detection is to find jumps in the
brightness function (of an image) and mark them.




Edge = abrupt change in pixel intensity\

1210989998 979998 1212

Look at: abs(jumps in value sideways)
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Edge detection \

I Create the algorithm in pseudocode:
while row not ended // keep scanning until end of row

select the next A and B pair, which are
neighboring pixels.

diff =B—A //formula to show math
if abs(diff) > Threshold //(THR)
mark as edge

Above is a simple solution to detecting the differences in pixel values
that are side by side.




Edge detection as convolution \

diff =B — A is the same as:

____CIENE

Box 1 \ Box 2 (“weights”)

Convolution symbol

Place box 2 on top of box 1, multiply.

1%¥Aand +1 %8B
Result is —A + B which is the same as
B—A



Differentiation and convolution \

f(x) A tangent line at given point x,
H Recallfor  (x) Rttt
o
: X+&)—J(X
P 1m(f( )= £ >j
e—0 E ] i .

J'(X) 4= slope of the tangent line
at each specific point x

A Useful for analyzing f(x)
JdHow to extend differentiation to ~A N\
multivariate functions like R

f,y) or f(x,y,2z) ?

X




Differentiation and convolution \

+ f(xy)

3D plot of f

f(x,p)

What is “slope” of f(x,y)

at a given point (x,y)?
Some intuition first: 8 P (%)

- For functions f(x,y) think about the slope of a tangent plane for its 3D plot at point (x,y).

- Such a slope could be characterized by direction and magnitude - attributes of a vector (?)




Differentiation and convolution \

dFor f(x, y) use fixed directions domain of f{x,y)

~ slope at .60
int (x,y)?
) |
0
at

(/- ;)
vector!

X
gradient Vf

(e.g. “partial” derivatives)

Kl :lim[f(ﬁg’y)_f(x’y)j ,

e—0 E

3 :lim(f(xﬂy-l_g)_f('xﬂy)j

E

range of f(x,y)



Gradients for function f(x, y)

dFor a function of two (or more) variables

J(x,)

_ ﬂ -
ox
of
Oy
two (or more)
dimensional vector

Vf=

small image gradients

in low textured areas

O Gradient’s absolute value v/ = /(%) + (%) describes “steepness” of the “slope”
or oy

- large at contrast edges, small in inform color regions

1 Gradient’s direction corresponds to the steepest ascend direction of the “slope”
- gradient is orthogonal to image object boundaries




Partial derivative for image \

At given point (x;,y,)

partial derivative with respect to x
one can approximate this as

(f(xw,y)—f(x,y)) 2 fa S y) = (X, )
E Ox - 2 Ax

0

P = lim

e—0

:Vx*f

convolution
with kernel 1




Partial derivative for image
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At given point

pproximate this as

f(xiﬂayi)_f(xi—layi)

if ~
a N/
* 2-Ax
— Vx X f
cqnvolutlon 01010
with kernel ] R
2Ax -
Vx 0 0




Partial derivative for image \

At given point

01010 019 one can approximate this as
01010 00
ololo 0l o ~ f(xiﬂayi)_f(xi—layi)
0100 00 2-Ax
01010 010 _
— Vx >x<f
01010 010
010]0 010 convolution o100l
0/0[0 00 with kernel 1 e
000 00 2Ax -
Vx 0 0
01010 00

1/2*(0-90) = -45



Partial derivative for image \

At given point )
01010 019 an approximate this as
0|00 00
ololo 0l o ifzf(xiﬂﬂyi)_f(xi—lﬂyi)
o 2. Ax
0[0]0O0 00 )
0[0]0O0 00 _
— Vx >x<f
0[0]0 00
010]0 010 convolution o100l
0/0]0 0|0 with kernel 1 e
0[0]0 010 2Ax -
\' ololo
0[01]0 00

1/2*(60-60) = 0



Image gradient
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Image gradient responding to noise

increasing noise ->
(this 1s zero mean additive Gaussian noise)



Gradient responding to noise \

f(x)a f(x)4 (with small noise)
X > X
S ()4 $ 1(x) 4 $




Smoothing and differentiation

dlssue: noise
dsmooth before differentiation
Jtwo convolutions: smooth, and then differentiate?
Jactually, no - we can use a derivative of Gaussian filter

dbecause differentiation is convolution, and
convolution is associative

Vo#(G*f)=(V, *G)* f

.f/
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(x-derivative of 2D gaussian)




Smoothing and differentiation \

dlssue: noise
dsmooth before differentiation
Jtwo convolutions: smooth, and then differentiate?
Jactually, no - we can use a derivative of Gaussian filter

dbecause differentiation is convolution, and
convolution is associative

V *@G V_*G

(y-derivative of 2D gaussian) (x-derivative of 2D gaussian)




1 pixel 3 pixels 7 pixels
The scale of the smoothing filter (e.g. “bandwidth” o of a Gaussian kernel)
affects derivative estimates, and also the semantics of the edges recovered.

MERCED N,



Image gradient and edges \

dTypical application where image gradients are used
Is image edge detection

find points with large image gradients

gradient magnitudes thresholded
||Vf|| gradient magnitudes

“Lena’s image”



Image gradient and edges

\

Edge thinning via non-maximum suppression

nearest neighbors

A e o @

I P

@ 0 q o
Gradient:at q/ |
* o 0-o--»

r
@ 9 . @

At any given point g we have a
maximum if the value ||V f|| at g

is larger than those at both p and at r.
(interpolate to get these values).

ridge of
maxima points

N\

;00
Y

.\K -.."...

gradient magnitudes



Image gradient and edges \

dTypical application where image gradients are used
Is image edge detection

find points with large image gradients

“edge features”

“ ’e ” radient magnitudes , ,
Lena’s image g HVJ%H (non-maxima suppression

+ adaitive thresholdini:



First Derivative Filter \

dSharp changes in gray level of the input image correspond to
“peaks or valleys” of the first-derivative of the input signal.

Fed 1 F0) 1

), -J




Second Derivative Filter \

(dPeaks or valleys of the first-derivative of the input signal,
correspond to “zero-crossings” of the second-derivative of the
input signal.

Fe) T Fi(x) 1 F(x)!

) -»JL—» )
V




Numerical Derivative

dTaylor series expansion

\

Flth) = FQ)+hF (x) 4 21 (x) 4 5o £ (x) + O

add

+ [f (x—h) = f(x)—hf'(x)+ lhzf "(x) =5 " (%) + 0(h4)]

flx+h)+ f(x—h) =2f(x) +h>f"(x) + O(h")

fx—h)—2f(x)+ f(x+h)

h?

1

-2

1

= f"(x)+ 00

Central difference approx
to second derivative



Example: Second derivatives
I =d’I(x,y)/dx>

[1 2 1]

2nd Partial deriv wrt x

2nd Partial deriv wrty




Finding zero-crossings \

JAn alternative approx to finding edges as peaks in first deriv is
to find zero-crossings in second deriv.

dIn 1D, convolve with [1 -2 1] and look for pixels where response
is (nearly) zero?

A Problem: when first deriv is zero, so is second. i.e. the filter [1 -
2 1] also produces zero when convolved with regions of
constant intensity.

dSo, in 1D, convolve with [1 -2 1] and look for pixels where
response is nearly zero AND magnitude of first derivative is
“large enough”.



Edge detection summary
1D |

step edge

IVI(x.y)l =(I,2(x)y) + LA(x,y))"2> Th
tan 6 = L(x,y)/ L (x.y)

2nd deriv | 1st deriv




Lap|aCian filter \

LotLy={[1-2 1] + [ -2 % 1

0 1 0
=1 -4 1| %1
0 10

\ J
h 4

Laplacian filter v2I(x,y)




Example: Laplacian filter
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More about Laplacian filter \

(JSum of second-order derivatives
dVery sensitive to noise
It is always combined with a smoothing operation

I(xy) | O(x.y)

Smooth| | Laplacian




Laplacian of Gaussian (LoG) filter \

dFirst, smooth image (Gaussian filtering)
dSecond, find zero-crossings (Laplacian operator)

VA (x,2)®G(x,) =V°G(x,y)® f(x,)

S — S

Y Y
Laplacian of Laplacian of Gaussian (LoG)
Gaussian-filtered image -filtered image

Do you see the distinction?



Second derivatives of Gaussian \

x2

g(x)=e >

2

2
X

2

N x° 1
g"(x) = (- ——)e 2
o O

2 =
018
-
l aos
analog -
200 o 77250
150 Sy 200
100 - 150
= 100

LoG "Mexican Hat"




