
CSE 185 Introduction to Computer Vision
Lecture 3: Image Processing

Slides credit: Yuri Boykov, Ming-Hsuan Yang, Boqing Gong,
Richard Szeliski, Steve Seitz, Alyosha Efros, Fei-Fei Li, etc.

Image Processing
qAn image processing operation defines a new image g in terms

of an existing image f

qGeometric (domain) transformations:

qRange transformation:

qFiltering also generates new images from an existing image

dvduvyuxfvuhyxg

v
u

××--×= ò
<
<
e
e

||
||

),(),(),(

)),((),(yxftyxg =

)),(),,((),(yxtyxtfyxg yx=

point processing

neighborhood processing

Point processing

for each original image intensity value I function t(·)
returns a transformed intensity value t(I).

)),((),(yxftyxg =

NOTE: we will often use
notation Ip instead of f(x,y) to
denote intensity at pixel p=(x,y)

q Important: every pixel is for itself
- spatial information is ignored!

q What can point processing do?
(we will focus on grey scale images, see Szeliski 3.1 for examples of point processing for color images)

image
range

image
range

Example of gray-scale transformation t

Point processing: negative

),(yxf

),(255)),((),(yxfyxftyxg -==

IIt -= 255)(

),(yxgpI or pI ¢ or

Power-law transformations t

Image enhancement via gamma correction

Image histogram

Image Brightness Image Contrast

n
nip i=)(probability of intensity i :

---number of pixels with intensity i

---total number of pixels in the image

Contrast stretching

Original image

0

L - 1

L - 1

T(r)

Input gray level, r

O
ut

pu
t g

ra
y

le
ve

l,
s

Output image

a.k.a. intensity thresholding

Histogram equalization

= cumulative distribution
of image intensitieså å

= =

==
i

j

i

j
n
n jjpit

0 0
)()(

Histogram equalization
Original images Histogram corrected images

1)

2)

Histogram equalization
Original images Histogram corrected images

3)

4)

Histogram equalization

…see Gonzalez and Woods, Sec3.3.1, for more details

= cumulative distribution
of image intensitieså å

= =

==
i

j

i

j
n
n jjpit

0 0
)()(

Histogram equalization

Answer in probability theory:

I – random variable with probability distribution p(i) over i in [0,1]

If t(i) is a cumulative distribution of I then

I’=t(I) – is a random variable with uniform distribution over its range [0,1]

That is, transform image I’ will have a uniformly-spread histogram (good contrast)

= cumulative distribution
of image intensitieså å

= =

==
i

j

i

j
n
n jjpit

0 0
)()(

Q: Why does that work?

Histogram equalization for continuous case

slide from Bernd Girod

https://web.stanford.edu/class/ee368/Handouts/Lectures/2019_Winter/4-Histograms.pdf

Histogram equalization example

slide from Bernd Girod

https://web.stanford.edu/class/ee368/Handouts/Lectures/2019_Winter/4-Histograms.pdf

Histogram equalization example

slide from Bernd Girod

https://web.stanford.edu/class/ee368/Handouts/Lectures/2019_Winter/4-Histograms.pdf

dvduvyuxfvuhyxg

v
u

××--×= ò
<
<
e
e

||
||

),(),(),(

)),((),(yxftyxg =point processing:

neighborhood processing:

From point to neighborhood processing

A 2D image f[i,j] can be filtered by a 2D kernel h[u,v] to produce
an output image g[i,j]:

This is called a convolution operation and written:

h is called “kernel” or “mask” or “filter” which
representing a given “window function”

2D Convolution

å å
-= -=

++×=
k

ku

k

kv
vjuifvuhjig],[],[],[

fhg =

2D filtering for noise reduction

q Common types of noise:
q Salt and pepper noise:

random occurrences of
black and white pixels

q Impulse noise: random
occurrences of white pixels

q Gaussian noise: variations in
intensity drawn from a
Gaussian normal distribution

Mean filtering

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

?

],[yxf],[yxg

10

Mean filtering

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

],[yxf],[yxg

10

80

Mean filtering

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

],[yxf],[yxg

0 10 20 30 30 30 20 10
0 20 40 60 60 60 40 20
0 30 60 90 90 90 60 30
0 30 50 80 80 90 60 30
0 30 50 80 80 90 60 30
0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10
10 10 10 0 0 0 0 0

side effect of mean filtering: blurring

Mean filtering

1 1 1
1 1 1
1 1 1

qWhat’s the kernel for a 3x3 mean filter?

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

×
9
1

Mean kernel

Gaussian filtering
qA Gaussian kernel gives less weight to pixels further

from the center
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

discrete approximation of
a Gaussian (density) function

1 2 1
2 4 2
1 2 1

×
16
1

q NOTE: Gaussian distribution is a synonym for Normal distribution!

Gaussian filtering
qA Gaussian kernel gives less weight to pixels further

from the center
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

discrete approximation of
a Gaussian (density) function

1 2 1
2 4 2
1 2 1

×
16
1

We denote such Gaussian kernels by G or GϬ

sG

Mean vs Gaussian filtering

no rotational invariance

Median filter
qA Median Filter operates over a window by selecting

the median intensity in the window.

qWhat advantage does a median filter have over a
mean filter?

qIs a median filter a kind of convolution?

q - No, median filter is non-linear

Comparison:
salt and pepper
noise

Edge detection
qThe purpose of Edge Detection is to find jumps in the

brightness function (of an image) and mark them.

1 2 1 0 98 99 98 97 99 98 1 2 1 2

Look at: abs(jumps in value sideways)

0

20

40

60

80

100

120

Pixel Values

Edge = abrupt change in pixel intensity

qCreate the algorithm in pseudocode:
while row not ended // keep scanning until end of row

select the next A and B pair, which are
neighboring pixels.

diff = B – A //formula to show math
if abs(diff) > Threshold //(THR)

mark as edge

Edge detection

Above is a simple solution to detecting the differences in pixel values
that are side by side.

qdiff = B – A is the same as:

A B -1 +1*
Convolution symbol

Box 1 Box 2 (“weights”)

Place box 2 on top of box 1, multiply.
-1 * A and +1 * B
Result is –A + B which is the same as
B – A

Edge detection as convolution

Differentiation and convolution

q Recall for

qUseful for analyzing f(x)
qHow to extend differentiation to

multivariate functions like
or ?

÷
ø
ö

ç
è
æ -+

=
® e

e
e

)()(lim)('
0

xfxfxf

)(xf

),(yxf),,(zyxf

x

)(' xf

x

= slope of the tangent line
at each specific point x

tangent line at given point x0
a.k.a. 1-st order Taylor approx.

“extrema”
points

steepest
positive

slope

steepest
negative

slope

x0

dx

),(yxf

Some intuition first:

- For functions f(x,y) think about the slope of a tangent plane for its 3D plot at point (x,y).

- Such a slope could be characterized by direction and magnitude - attributes of a vector (?)

3D plot of f

x
y

f(x,y)

What is “slope” of f(x,y)
at a given point (x,y)?

Differentiation and convolution

range of f(x,y)

qFor use fixed directions

÷
ø
ö

ç
è
æ -+

=
®¶

¶

e
e

e

),(),(lim
0

yxfyxffx

),(yxf

÷
ø
ö

ç
è
æ -+

=
®¶

¶

e
e

e

),(),(lim
0

yxfyxffy
fy¶¶

x

y

domain of f(x,y)

fx¶¶

vector!
),(''
yx ff

slope at
point (x,y)?

gradient fÑ

(e.g. “partial” derivatives)

Differentiation and convolution

Gradients for function f(x, y)

x
f
¶
¶

y
f
¶
¶

qFor a function of two (or more) variables

),(yxf

two (or more)
dimensional vector

x

y

q Gradient’s absolute value describes “steepness” of the “slope”
- large at contrast edges, small in inform color regions

small image gradients
in low textured areas

q Gradient’s direction corresponds to the steepest ascend direction of the “slope”
- gradient is orthogonal to image object boundaries

At given point (xi ,yi)
one can approximate this as

x
yxfyxff iiii

x D×
-

» -+
¶
¶

2
),(),(11

fx *Ñ=

0 0 0
1 0 -1
0 0 0xÑ

×
Dx2
1

partial derivative with respect to x

÷
ø
ö

ç
è
æ -+

=
®¶

¶

e
e

e

),(),(lim
0

yxfyxffx

convolution
with kernel

Partial derivative for image

Partial derivative for image
At given point (xi ,yi)
one can approximate this as

x
yxfyxff iiii

x D×
-

» -+
¶
¶

2
),(),(11

fx *Ñ=

0 0 0
1 0 -1
0 0 0xÑ

×
Dx2
1

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 40 60 60 60 40 0 0
0 0 0 60 90 90 90 60 0 0
0 0 0 60 90 90 90 60 0 0
0 0 0 60 90 90 90 60 0 0
0 0 0 40 60 60 60 40 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1/2*(90-0) = 45

convolution
with kernel

Partial derivative for image
At given point (xi ,yi)
one can approximate this as

x
yxfyxff iiii

x D×
-

» -+
¶
¶

2
),(),(11

fx *Ñ=

0 0 0
1 0 -1
0 0 0xÑ

×
Dx2
1

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 40 60 60 60 40 0 0
0 0 0 60 90 90 90 60 0 0
0 0 0 60 90 90 90 60 0 0
0 0 0 60 90 90 90 60 0 0
0 0 0 40 60 60 60 40 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1/2*(0-90) = -45

convolution
with kernel

Partial derivative for image
At given point (xi ,yi)
one can approximate this as

x
yxfyxff iiii

x D×
-

» -+
¶
¶

2
),(),(11

fx *Ñ=

0 0 0
1 0 -1
0 0 0xÑ

×
Dx2
1

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 40 60 60 60 40 0 0
0 0 0 60 90 90 90 60 0 0
0 0 0 60 90 90 90 60 0 0
0 0 0 60 90 90 90 60 0 0
0 0 0 40 60 60 60 40 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1/2*(60-60) = 0

convolution
with kernel

fx *Ñ

Image gradient

increasing noise ->
(this is zero mean additive Gaussian noise)

Image gradient responding to noise

)(xf

x

)(' xf

x

)(' xf

x

)(xf

x

(with small noise)

Gradient responding to noise

qIssue: noise
qsmooth before differentiation
qtwo convolutions: smooth, and then differentiate?
qactually, no - we can use a derivative of Gaussian filter

qbecause differentiation is convolution, and
convolution is associative

fGfG xx **Ñ=**Ñ)()(
G

(2D gaussian)

(x-derivative of 2D gaussian)

Gx *Ñ

Smoothing and differentiation

qIssue: noise
qsmooth before differentiation
qtwo convolutions: smooth, and then differentiate?
qactually, no - we can use a derivative of Gaussian filter

qbecause differentiation is convolution, and
convolution is associative

Smoothing and differentiation

Gy *Ñ Gx *Ñ
(x-derivative of 2D gaussian)(y-derivative of 2D gaussian)

The scale of the smoothing filter (e.g. “bandwidth” σ of a Gaussian kernel)
affects derivative estimates, and also the semantics of the edges recovered.

1 pixel 3 pixels 7 pixels

fGx **Ñ)(

qTypical application where image gradients are used
is image edge detection
qfind points with large image gradients

“Lena’s image” thresholded
gradient magnitudes

gradient magnitudes

Image gradient and edges

At any given point q we have a
maximum if the value at q
is larger than those at both p and at r.
(interpolate to get these values).

Edge thinning via non-maximum suppression

gradient magnitudes
gra

dient d
ire

cti
on

q

q

nearest neighbors
of pixel q

Gradient at q

p

r

ridge of
maxima points

Image gradient and edges

qTypical application where image gradients are used
is image edge detection
qfind points with large image gradients

“Lena’s image” thresholded
gradient magnitudes

gradient magnitudes

Image gradient and edges

Canny edge detector
(non-maxima suppression
+ adaptive thresholding)

“edge features”

First Derivative Filter
qSharp changes in gray level of the input image correspond to

“peaks or valleys” of the first-derivative of the input signal.

Second Derivative Filter
qPeaks or valleys of the first-derivative of the input signal,

correspond to “zero-crossings” of the second-derivative of the
input signal.

Numerical Derivative
qTaylor series expansion

Example: Second derivatives

Finding zero-crossings
qAn alternative approx to finding edges as peaks in first deriv is

to find zero-crossings in second deriv.
qIn 1D, convolve with [1 -2 1] and look for pixels where response

is (nearly) zero?
qProblem: when first deriv is zero, so is second. i.e. the filter [1 -

2 1] also produces zero when convolved with regions of
constant intensity.

qSo, in 1D, convolve with [1 -2 1] and look for pixels where
response is nearly zero AND magnitude of first derivative is
“large enough”.

Edge detection summary

Laplacian filter

Example: Laplacian filter

More about Laplacian filter
qSum of second-order derivatives
qVery sensitive to noise
qIt is always combined with a smoothing operation

Laplacian of Gaussian (LoG) filter
qFirst, smooth image (Gaussian filtering)
qSecond, find zero-crossings (Laplacian operator)

Second derivatives of Gaussian

