
CSE 185 Introduction to Computer Vision
Lecture 3: Image Processing

Slides credit: Yuri Boykov, Ming-Hsuan Yang, Boqing Gong, 
Richard Szeliski, Steve Seitz, Alyosha Efros, Fei-Fei Li, etc.



Image Processing
qAn image processing operation defines a new image g in terms 

of an existing image f

qGeometric (domain) transformations:

qRange transformation:

qFiltering also generates new images from an existing image
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point processing

neighborhood processing



Point processing

for each original image intensity value  I function  t(·) 
returns a transformed intensity value  t(I).

)),((),( yxftyxg =

NOTE:     we will often use 
notation  Ip instead of  f(x,y) to 
denote intensity at pixel p=(x,y)

q Important: every pixel is for itself 
- spatial information is ignored!

q What can point processing do?
(we will focus on grey scale images, see Szeliski 3.1 for examples of point processing for color images)
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Example of gray-scale transformation t



Point processing: negative
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Power-law transformations t



Image enhancement via gamma correction 



Image histogram

Image Brightness Image Contrast

n
nip i=)(probability of intensity i :

---number of pixels with intensity i

---total number of pixels in the image



Contrast stretching

Original image
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a.k.a. intensity thresholding



Histogram equalization

= cumulative distribution
of image intensitieså å
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Histogram equalization
Original images Histogram corrected images
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Histogram equalization
Original images Histogram corrected images
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Histogram equalization

…see Gonzalez and Woods, Sec3.3.1, for more details
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Histogram equalization

Answer in probability theory:

I – random variable with probability distribution p(i)  over i in [0,1]

If t(i) is a cumulative distribution of  I   then

I’=t(I) – is a random variable with uniform distribution over its range [0,1]

That is, transform image I’  will have a uniformly-spread histogram (good contrast)
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Q: Why does that work?



Histogram equalization for continuous case

slide from Bernd Girod

https://web.stanford.edu/class/ee368/Handouts/Lectures/2019_Winter/4-Histograms.pdf


Histogram equalization example

slide from Bernd Girod

https://web.stanford.edu/class/ee368/Handouts/Lectures/2019_Winter/4-Histograms.pdf


Histogram equalization example

slide from Bernd Girod

https://web.stanford.edu/class/ee368/Handouts/Lectures/2019_Winter/4-Histograms.pdf
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neighborhood processing:

From point to neighborhood processing



A 2D image  f[i,j] can be filtered by a 2D kernel  h[u,v] to produce 
an output image g[i,j]:

This is called a convolution operation and written:

h is called “kernel” or “mask” or “filter” which 
representing a given “window function”

2D Convolution
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2D filtering for noise reduction

q Common types of noise:
q Salt and pepper noise: 

random occurrences of   
black and white pixels

q Impulse noise: random 
occurrences of white pixels

q Gaussian noise: variations in 
intensity drawn from a 
Gaussian normal distribution



Mean filtering
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Mean filtering
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Mean filtering
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side effect of mean filtering: blurring



Mean filtering



1 1 1
1 1 1
1 1 1

qWhat’s the kernel for a 3x3 mean filter?
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Gaussian filtering
qA Gaussian kernel gives less weight to pixels further              

from the center  
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discrete approximation of 
a Gaussian (density) function
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q NOTE: Gaussian distribution is a synonym for Normal distribution!



Gaussian filtering
qA Gaussian kernel gives less weight to pixels further              

from the center  
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0 0 0 0 0 0 0 0 0 0

discrete approximation of 
a Gaussian (density) function
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We denote such Gaussian kernels by G or GϬ

sG



Mean vs Gaussian filtering

no rotational invariance



Median filter
qA Median Filter operates over a window by selecting 

the median intensity in the window.

qWhat advantage does a median filter have over a 
mean filter?

qIs a median filter a kind of convolution?

q - No, median filter is non-linear



Comparison: 
salt and pepper 
noise



Edge detection
qThe purpose of Edge Detection is to find jumps in the 

brightness function (of an image) and mark them. 
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Look at: abs(jumps in value sideways)
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Edge = abrupt change in pixel intensity



qCreate the algorithm in pseudocode:
while row not ended  // keep scanning until end of row

select the next A and B pair, which are 
neighboring pixels.

diff = B – A //formula to show math
if abs(diff) > Threshold     //(THR)

mark as edge   

Edge detection

Above is a simple solution to detecting the differences in pixel values 
that are side by side.



qdiff = B – A is the same as: 

A B -1 +1*
Convolution symbol

Box 1 Box 2 (“weights”)

Place box 2 on top of box 1, multiply. 
-1 * A and  +1 * B 
Result is –A + B  which is the same as 
B – A 

Edge detection as convolution



Differentiation and convolution

q Recall for 

qUseful for analyzing  f(x)
qHow to extend differentiation to 

multivariate functions like
or                       ?
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= slope of the tangent line 
at each specific point x

tangent line at given point x0
a.k.a. 1-st order Taylor approx.

“extrema”
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),( yxf

Some intuition first: 

- For functions  f(x,y) think about the slope of a tangent plane for its 3D plot at point (x,y).

- Such a slope could be characterized by direction and magnitude - attributes of a vector (?)

3D plot of  f

x
y

f(x,y)

What is “slope” of  f(x,y)
at a given point (x,y)?

Differentiation and convolution



range of  f(x,y)

qFor                 use fixed directions
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(e.g. “partial” derivatives)

Differentiation and convolution



Gradients for function f(x, y)
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qFor a function of two (or more) variables

),( yxf

two (or more) 
dimensional vector

x
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q Gradient’s absolute value describes “steepness” of the “slope”
- large at contrast edges, small in inform color regions 

small image gradients 
in low textured areas

q Gradient’s direction corresponds to the steepest ascend direction of the “slope”
- gradient is orthogonal to image object boundaries 



At given point  (xi ,yi)
one can approximate this as
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with kernel          

Partial derivative for image



Partial derivative for image
At given point  (xi ,yi)
one can approximate this as
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Partial derivative for image
At given point  (xi ,yi)
one can approximate this as
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Partial derivative for image
At given point  (xi ,yi)
one can approximate this as
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with kernel          



fx *Ñ

Image gradient



increasing noise ->
(this is zero mean additive Gaussian noise)

Image gradient responding to noise
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Gradient responding to noise



qIssue:  noise
qsmooth before differentiation
qtwo convolutions: smooth, and then differentiate?
qactually, no - we can use a derivative of Gaussian filter

qbecause differentiation is convolution, and 
convolution is associative

fGfG xx **Ñ=**Ñ )()(
G  

(2D gaussian)

(x-derivative of 2D gaussian)

Gx *Ñ

Smoothing and differentiation



qIssue:  noise
qsmooth before differentiation
qtwo convolutions: smooth, and then differentiate?
qactually, no - we can use a derivative of Gaussian filter

qbecause differentiation is convolution, and 
convolution is associative

Smoothing and differentiation

Gy *Ñ Gx *Ñ
(x-derivative of 2D gaussian)(y-derivative of 2D gaussian)



The scale of the smoothing filter  (e.g. “bandwidth”  σ of a Gaussian kernel) 
affects derivative estimates, and also the semantics of the edges recovered.

1 pixel 3 pixels 7 pixels

fGx **Ñ )(



qTypical application where image gradients are used 
is image edge detection
qfind points with large image gradients 

“Lena’s image” thresholded
gradient magnitudes

gradient magnitudes

Image gradient and edges



At any given point  q we have a 
maximum if the value             at q
is larger than those at both p and at r. 
(interpolate to get these values).

Edge thinning via non-maximum suppression

gradient magnitudes
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of pixel q

Gradient at q

p

r

ridge of 
maxima points

Image gradient and edges



qTypical application where image gradients are used 
is image edge detection
qfind points with large image gradients 

“Lena’s image” thresholded
gradient magnitudes

gradient magnitudes

Image gradient and edges

Canny edge detector
(non-maxima suppression
+ adaptive thresholding)

“edge features”



First Derivative Filter
qSharp changes in gray level of the input image correspond to 

“peaks or valleys” of the first-derivative of the input signal.



Second Derivative Filter
qPeaks or valleys of the first-derivative of the input signal, 

correspond to “zero-crossings” of the second-derivative of the 
input signal.



Numerical Derivative
qTaylor series expansion



Example: Second derivatives



Finding zero-crossings
qAn alternative approx to finding edges as peaks in first deriv is 

to find zero-crossings in second deriv. 
qIn 1D, convolve with [1 -2  1] and look for pixels where response 

is (nearly) zero? 
qProblem: when first deriv is zero, so is second.  i.e. the filter [1  -

2   1] also produces zero when convolved with regions of 
constant intensity. 

qSo, in 1D, convolve with [1 -2  1] and look for pixels where 
response is nearly zero AND magnitude of first derivative is 
“large enough”.



Edge detection summary



Laplacian filter



Example: Laplacian filter



More about Laplacian filter
qSum of second-order derivatives
qVery sensitive to noise
qIt is always combined with a smoothing operation  



Laplacian of Gaussian (LoG) filter
qFirst, smooth image (Gaussian filtering)
qSecond, find zero-crossings (Laplacian operator)



Second derivatives of Gaussian


