CSE 185 Introduction to Computer Vision Lecture 4: Corner Detector

Slides credit: Yuri Boykov, Ming-Hsuan Yang, Robert Collins, Richard Szeliski, Steve Seitz, Alyosha Efros, Fei-Fei Li, etc.

Motivation for feature points

Many applications require generic "discriminant" feature points with identifiable appearance and location
(so that they can be matched across multiple images)

Motivation: patch matching

\square Elements to be matched are image patches of fixed size

Task: find the best (most similar) patch in a second image

slide credit: Robert Collins

Not all patches are created equal!

\square Elements to be matched are image patches of fixed size

Intuition: this would be a good patch for matching, since it is very distinctive (there is only one patch in the second frame that looks similar).

slide credit: Robert Collins

Not all patches are created equal!

\square Elements to be matched are image patches of fixed size

Intuition: this would be a BAD patch for matching, since it is not very distinctive

Harris detector: basic idea

"flat" region:
no change in all directions

"edge":
no change along the edge direction

"corner":
significant change in all directions

Harris detector: mathematics

patch w change measure for shift $d s=\left[\begin{array}{l}u \\ v\end{array}\right]$:
weighted sum of squared differences

NOTE:
window support functions $w(x, y)=$

1 in window, 0 outside

Gaussian
(weighted) support

Harris detector: mathematics

Change of intensity for the shift $d s=\left[\begin{array}{l}u \\ v\end{array}\right]$ assuming image gradient $\nabla I \equiv\left[\begin{array}{l}I_{x} \\ I_{y}\end{array}\right]$

$$
I(x+u, y+v)-I(x, y) \approx I_{x} \cdot u+I_{y} \cdot v=d s^{T} \cdot \nabla I
$$

difference/change in I at (x, y) for shift $(u, v)=d s$ (remember gradient definition on earlier slides!!!!) this is $1^{\text {st }}$ order Taylor expansion
$[I(x+u, y+v)-I(x, y)]^{2} \approx d s^{T} \cdot \nabla I \cdot \nabla I^{T} \cdot d s$

$$
E_{w}(u, v)=\sum w(x, y) \cdot[I(x+u, y+v)-I(x, y)]^{2}
$$

$$
\approx d s^{T} \cdot\left(\sum_{x, y} w(x, y) \cdot \nabla I \cdot \nabla I^{T}\right)_{M_{w}} \cdot d s=d s^{T} \cdot M_{w} \cdot d s
$$

Harris detector: mathematics

Change of intensity for the shift $d s=\left[\begin{array}{l}u \\ \nu\end{array}\right]$ assuming image gradient $\nabla I \equiv\left[\begin{array}{l}I_{x} \\ I_{y}\end{array}\right]$
$E_{w}(u, v) \cong\left[\begin{array}{ll}u & v\end{array}\right] \cdot M_{w} \cdot\left[\begin{array}{l}u \\ v\end{array}\right]=d s^{T} \cdot M_{w} \cdot d s=E_{w}(d s)$
where M_{w} is a 2×2 matrix computed from image derivatives inside patch w
matrix M is also called Harris matrix or structure tensor

$$
\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{y} I_{x} & I_{y}^{2}
\end{array}\right]
$$

This tells you how to compute M_{w} at any window w
(t.e. any image patch)

UCMERGED

M

Intuitive way to understand Harris

\square Treat gradient vectors as a set of (dx, dy) points with a center of mass defined as being at $(0,0)$.
\square Fit an ellipse to that set of points via scatter matrix
\square Analyze ellipse parameters for varying cases...

Example: cases and 2D derivatives

Plotting derivatives as 2D points

Fitting ellipse to 2D points

Classification via eigenvalues

Classification of image points using eigenvalues of M :

M

Harris detector: mathematics

Change of intensity for the shift $d s=\left[\begin{array}{l}u \\ v\end{array}\right]$ assuming image gradient $\nabla I \equiv\left[\begin{array}{l}I_{x} \\ I_{y}\end{array}\right]$

$$
E_{w}(u, v) \cong\left[\begin{array}{ll}
u & v
\end{array}\right] \cdot M_{w} \cdot\left[\begin{array}{l}
u \\
v
\end{array}\right]=d s^{T} \cdot M_{w} \cdot d s
$$

paraboloi

M is a positive semi-definite (p.s.d.) matrix (Exercise: show that $d s^{T} \cdot M \cdot d s \geq 0$ for any $d s$)
M can be analyzed via isolines, e.g. $d s^{T} \cdot M_{w} \cdot d s=1 \quad$ (ellipsoid)
 see next slide

Points on this ellipsoid are shifts $d s=[u, v]^{T}$ giving the same sum of squared differences $E(u, v)=1$. \Rightarrow This isoline visually illustrates how differences E depend on shifts $d s=[u, v]^{T}$ in different directions.

Note for linear algebra: Ellipsoids

UCMERGED

M

Harris detector: mathematics

Classification of image points using eigenvalues of M :

\mathbb{M}

Harris detector: mathematics

One common measure of corner response:

$$
R=\frac{\operatorname{det} M}{\operatorname{Trace} M}
$$

Harris corner detection algorithm

1. Compute x and y derivatives of image

$$
I_{x}=G_{\sigma}^{x} * I \quad I_{y}=G_{\sigma}^{y} * I
$$

2. Compute products of derivatives at every pixel

$$
I_{x 2}=I_{x} \cdot I_{x} \quad I_{y 2}=I_{y} \cdot I_{y} \quad I_{x y}=I_{x} \cdot I_{y}
$$

3. Compute the sums of the products of derivatives at each pixel

$$
S_{x 2}=G_{\sigma \prime} * I_{x 2} \quad S_{y 2}=G_{\sigma \prime} * I_{y 2} \quad S_{x y}=G_{\sigma \prime} * I_{x y}
$$

4. Define at each pixel (x, y) the matrix

$$
H(x, y)=\left[\begin{array}{cc}
S_{x 2}(x, y) & S_{x y}(x, y) \\
S_{x y}(x, y) & S_{y 2}(x, y)
\end{array}\right]
$$

5. Compute the response of the detector at each pixel

$$
R=\operatorname{Det}(H)-k(\operatorname{Trace}(H))^{2}
$$

6. Threshold on value of R. Compute nonmax suppression.

UCMERGED

Harris detector workflow

Features are often needed to register different views of the same object

Harris detector workflow
Compute corner response R

Harris detector workflow
Find points with large corner response: $R>$ threshold

Harris detector workflow

Take only the points of local maxima of R

Harris detector workflow

