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CSE 185 Introduction to Computer Vision
Lecture 4: Corner Detector

Slides credit: Yuri Boykov, Ming-Hsuan Yang, Robert Collins,
Richard Szeliski, Steve Seitz, Alyosha Efros, Fei-Fei Li, etc.



Motivation for feature points \

Many applications require
generic “discriminant” feature points with
identifiable appearance and location

(so that they can be matched across multiple images)




Motivation: patch matching \

J Elements to be matched are image patches of fixed size

slide credit: Robert Collins




Not all patches are created equal! \

J Elements to be matched are image patches of fixed size

Intuition: this would be a good patch for matching, since it is very distinctive
(there is only one patch in the second frame that looks similar).
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Not all patches are created equal! \

J Elements to be matched are image patches of fixed size

Intuition: this would be a BAD patch for matching, since it is not very distinctive

slide credit: Robert Collins



Harris detector: basic idea

“flat” region: “edge”: “corner”:
no change in all no change along the significant change in all
directions edge direction directions




Harris detector: mathematics
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Harris detector: mathematics

Change of intensity for the shiftas = H assuming image gradient yy = j

Y

I(x+u,y+v)—I(x,y) = [ -u+l, v = ds" -VI

difference/change in | at (x,y) for shift (u,v) =ds (remember gradient definition on earlier slides!!!!)

this is 15t order Taylor expansion

[[(x+u,y+v)—1(x,»)]" = ds'-VI-VI"-ds

R

ds"-| Y w(x,y)-VI-VI" |-ds= ds* -M,ds

X,) M,



Harris detector: mathematics

Change of intensity for the shiftg = H assuming image gradient yy=|

V

where M, is a 2x2 matrix computed from image derivatives inside

patch w
2
matrix M is also called ]x ]x[y
Harris matrix or structure tensor LI, 1 i This tells you how

| to compute M,,

( \ at any window w
T (t.e. any image
et D w(x, ) VI-VIT |- o

X,y M,



Intuitive way to understand Harris\

J Treat gradient vectors as a set of (dx,dy) points with a center of
mass defined as being at (0,0).

Fit an ellipse to that set of points via scatter matrix

JAnalyze ellipse parameters for varying cases...




Example: cases and 2D derivatives
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X derivative Inputimage patch

Y derivative

Linear Edge Flat Corner




Plotting derivatives as 2

The distribution of the x and y
derivatives is very different for
all three types of patches
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Fitting ellipse to 2D points

o1
The distribution of x and y o [;
derivatives can be characterized [ .
by the shape and size of the
principal component ellipse
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Classification via eigenvalues \

Classification of image A2
points using eigenvalues
of M:

A, and A, are small;

E is almost constant :,|>
in all directions

A
”Edge”

Ay >> 0

“Flat”
region

llEdge”
Ay >> N,




Harris detector: mathematics

Change of intensity for the shiftas = H assuming image gradient yy = j

Y

paraboloi

M is a positive semi-definite (p.s.d.) matrix (Exercise: show that ds’ -M -ds >0 for any ds)

M can be analyzed via isolines, e.qg. dST -MW -ds = 1 (ellipsoid)
T

see next slide

Li Points on this ellipsoid are shifts ds=[u,v]"
D) s giving the same sum of squared differences E(u,v)=1.
\/Z T —> This isoline visually illustrates how differences E
T A depend on shifts ds=[u,v]" in different directions.

two eigen values of matrix M,,
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Note for linear algebra: Ellipsoids

2 o A R ellipsoid aligned with
(= unit circle coordinate axes
Is| =1 AzSa + Ayss =

assuming non-negative A, and A,

2 2
or Sm+8y_1

with general principal axes

vV
1 _ for any p.s.d. matrix M

Explanation: M = VAVT(eigendecompositionforanyp.s.d. M)
P sT - M-s =1 = TV .A-VT.g =1

v, ellipsoid
)\

two columns are
orthogonal unit
eigenvectors
of matrix M

eigenvalues
of matrix M = (VT )T ( )
\ 0 change to a different T
A= [ Om i\ ] orthogonal coordinate basis t = V' * - s — T At =1
y

(more in next topic) rotation




Harris detector: mathematics \

Classification of image
points using eigenvalues
of M:

A, and A, are small;
E is almost constant
in all directions

A2

A
”Edge”

Ay >> 0

“Flat”
region

llEdge”
Ay >> N,




Harris detector: mathematics \

Ao

One common measure
of corner response:

P det M
Trace M
det M = A A,

trace M = A, + A,




Harris corner detection algorithm

1. Compute = and y derivatives of image
I =Gg 1 lyng*l

2. Compute products of derivatives at every
pixel

1‘172 = I_];.IJ' 1y2 _ I'/Il/ I;I_'_y — I.‘IY-IU

3. Compute the sums of the products of deriva-
tives at each pixel

Sy2 = Gor* Iz2 Sy? = Gor * IyQ Szy = Gor * Izy

4. Define at each pixel (z,y) the matrix

A Ap) — S;,Q(ilf, y) S‘ry(.'lf, y)
II(~.L1 y) - 'S.Ty<‘r‘ y) ‘SI/Z(\T‘ y)

5. Compute the response of the detector at
each pixel

R = Det(H) — k(Trace(H))?

6. Threshold on value of R. Compute nonmax suppression.




Harris detector workflow | l

Features are often needed to register different views of the same object> |




Harris detector workflow

Compute corner response R




Harris detector workflow .

Find points with large corner response: R>threshold

&




Harris detector workflow .

Take only the points of local maxima of R




Harris detector workflow




