
CSE 185 Introduction to Computer Vision
Lecture 4: Corner Detector

Slides credit: Yuri Boykov, Ming-Hsuan Yang, Robert Collins, 
Richard Szeliski, Steve Seitz, Alyosha Efros, Fei-Fei Li, etc.



Motivation for feature points
Many applications require 

generic “discriminant” feature points with
identifiable appearance and location

(so that they can be matched across multiple images)



Motivation: patch matching
q Elements to be matched are image patches of fixed size

slide credit: Robert Collins

Task: find the best (most similar) patch in a second image



Not all patches are created equal!
q Elements to be matched are image patches of fixed size

slide credit: Robert Collins

Intuition: this would be a good patch for matching, since it is very distinctive 
(there is only one patch in the second frame that looks similar).



Not all patches are created equal!
q Elements to be matched are image patches of fixed size

slide credit: Robert Collins

Intuition: this would be a BAD patch for matching, since it is not very distinctive



“flat” region:
no change in all 
directions

“edge”:
no change along the 
edge direction

“corner”:
significant change in all 
directions

Harris detector: basic idea



Harris detector: mathematics
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patch w change measure for shift           :
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Window 
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window support
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Harris detector: mathematics
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Change of intensity for the shift assuming image gradient  ú
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difference/change in  I at (x,y)  for shift  (u,v) = ds                     (remember gradient definition on earlier slides!!!!)

this is 1st order Taylor expansion

dsMds w
T ××=

Mw
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where  Mw is a 2´2 matrix computed from image derivatives inside 
patch  w
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This tells you how 
to compute Mw

at any window  w
(t.e. any image 

patch)

matrix  M is also called 
Harris matrix or structure tensor

Harris detector: mathematics
Change of intensity for the shift assuming image gradient  ú
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q Treat gradient vectors as a set of (dx,dy) points with a center of 
mass defined as being at (0,0).

qFit an ellipse to that set of points via scatter matrix

qAnalyze ellipse parameters for varying cases…

Intuitive way to understand Harris



Example: cases and 2D derivatives



Plotting derivatives as 2D points



Fitting ellipse to 2D points



l1

l2

“Corner”
l1 and l2 are large,
l1 ~ l2;

E rapidly increases in all 
directions

l1 and l2 are small;
E is almost constant 
in all directions

“Edge” 
l1 >> l2

“Edge” 
l2 >> l1

“Flat” 
region

Classification of image 
points using eigenvalues 
of M:

Classification via eigenvalues
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Harris detector: mathematics
Change of intensity for the shift assuming image gradient  ú
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M is a positive semi-definite (p.s.d.) matrix   (Exercise: show that                              for any ds) 0³×× dsMdsT

M can be analyzed via isolines, e.g. (ellipsoid) 1=×× dsMds w
T

Points on this ellipsoid are shifts ds=[u,v]T
giving the same sum of squared differences E(u,v)=1.
Þ This isoline visually illustrates how differences E

depend on shifts ds=[u,v]T in different directions.
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two eigen values of matrix  Mw

see next slide



s

ellipsoid aligned with
coordinate axes  

or         

or

unit circle

or

for

2Â

s

V2

V1

2Â

2Â

s

ellipsoid 
with general principal axes

for any p.s.d. matrix M

Explanation:                             (eigendecomposition for any p.s.d. M) 

assuming non-negative

change to a different 
orthogonal coordinate basis

(more in next topic) rotation

two columns are 
orthogonal unit
eigenvectors
of matrix M

eigenvalues
of matrix M

Note for linear algebra: Ellipsoids



l1

l2

“Corner”
l1 and l2 are large,
l1 ~ l2;

E rapidly increases in all 
directions

l1 and l2 are small;
E is almost constant 
in all directions

“Edge” 
l1 >> l2

“Edge” 
l2 >> l1

“Flat” 
region

Classification of image 
points using eigenvalues 
of M:

Harris detector: mathematics



One common measure 
of corner response:
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Harris detector: mathematics



Harris corner detection algorithm



Features are often needed to register different views of the same object

Harris detector workflow



Harris detector workflow
Compute corner response R



Harris detector workflow
Find points with large corner response: R>threshold



Harris detector workflow
Take only the points of local maxima of R



Harris detector workflow


