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CSE 185 Introduction to Computer Vision
Lecture 5: Image Warping

Slides credit: Yuri Boykov, Ming-Hsuan Yang, Robert Collins,
Richard Szeliski, Steve Seitz, Alyosha Efros, Fei-Fei Li, etc.



Image Warping
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Image Warping (a.k.a. Domain Tranm\

J Parametric transformations

O - Linear transformations of images via 2x2 matrices
(a crash course on basic linear algebra)

O Affine transformations
O Homographies (3x3 transformation matrices)

(J Estimation of parametric transformations (rom corresponding

points)

J Forward and inverse warps
O - bilinear interpolation




Image Warping \

dpoint processing: change range of image

Hg(x) = T(f(x))
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image warping: change domain of image

g(x) =1(T(x))
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Image Warping

dpoint processing: change range of image

Hg(x) = T(f(x))

image warping: change domain of image

g(x) =1(T(x))




Parametric (global) warping \

JExamples of parametric warps:

perspective o
affine cylindrical



Parametric (global) warping

Transformation T is a coordinate-changing machine:

dWhat does it mean that T is global?

the same transform for any point p
(described by just a few numbers (parameters)

ULet’s represent T as a matrix: p’=Mp (linear transforms)

=M 9@ =gM-p)=f(p) = F(M~1-p')




Scaling \

(AScaling a coordinate means multiplying each of its components by a
scalar

dUniform scaling means this scalar is the same for all components:

=




Scaling \

A Non-uniform scaling: different scalars per component:

XXZ, rg——ﬁ
Y x0.5




Scaling \

Scaling operation:

x'=ax

y'=by

Or, in matrix form:

.
Y| 10 by
H_J

What's inverse of S? scaling matrix S




2-D Rotation
o (X, Y)
(X, y)

X" = x cos(9) - y sin(0)
0 vy’ = xsin(0) + y cos(0)

>




2-D Rotation (derivation) \

X =r cos (¢)
y =rsin (¢)
x"=rcos (¢ +0)
y' =rsin (¢ +0)

V4 V4

o (X ) y )

Trig Identity...
x" =r cos(d) cos(0) —r sin(d) sin(6)

(X’ y) y’ =r cos(d) sin(0) + r sin(d) cos(0)

Substitute...

' =x cos(0) -y sin(0)

(I) y’ =X sin(0) + y cos(0)




2-D Rotation

This is easy to capture in matrix form:

x| [cos(@) —sin(@)

V' sin(@) cos(@) ||y
- /-

Y
R

dEven though sin(6) and cos(6) are nonlinear functions of 6,
Ux’ is a linear combination of x and y
Uy’ is a linear combination of x and y

What is the inverse transformation?

JRotation by -6
UFor rotation matrices R—l . RT



2x2 Matrices \

dWhat types of transformations can be
represented with a 2x2 matrix?

2D ldentity?

o N

2D Scale around (0,0)?
X'=s,*x x' ) 0 || x

y': Sy >X<y y' O Sy y




2x2 Matrices \

dWhat types of transformations can be
represented with a 2x2 matrix?

2D Rotate around (0,0)?

x':cos@*x-sin@*y x' B cos® —smO | x
Y'=smO®*x+cos®*y

y sn® cos® |y
2D Shear?
v =x+ shy xy {x’}_[l shm}[a}}
y/:y y/ 0 1 Y



2x2 Matrices \

dWhat types of transformations can be
represented with a 2x2 matrix?

2D Mirror about Y axis?




2x2 Matrices \

dWhat types of transformations can be
represented with a 2x2 matrix?

2D Translation?
X'=x+t,

y'=y+t,

NO!

Only linear 2D transformations
can be represented with a 2x2 matrix




All 2D Linear Transformations

WLinear transformations are combinations of ...
Scale,

U Rotation, '
O Shear, and X a b X

U Mirror

UProperties of linear transformations:
U Origin maps to origin
WLines map to lines
U Parallel lines remain parallel
U Distance or length ratios are preserved on parallel lines
U scaling of length/distances depends on (line) orientation only (see next slide)
U Ratios of areas are preserved
W Closed under composition

xX'| |a b|i j|s q|x

V'l |lc dilk [|r t|y

USee pp. 40-41 of Hartley and Zisserman “Multiple View Geometry” (2"¢ edition)




Linear Transformation as Space Defom

{qx} {u VX}H
/ =
coordinates of g in basis i,j qy u, v, 3] T~ coordinates of p in basis i,j

q=9g.i+q,] p=4i+3j

point p is transformed into new point q




Linear Transformation as Change of Basis\

NOTE: q looks just like p
relative to coordinate system u,v

q =(4,3)

u =(uy, uy):ux-i+uy-j
now interpret the columns of matrix T
as some vectors u and v (their coordinates in basis i, j)

i =(1,0)

/ =
coordinates of g in basis i,j qy u, v, 3] T~ coordinates of g in basis u,v
q=q.i+q, ] q=4u+3v

u v ax qy

indeed, q=4-(u_-i+u )+3-(v i+v -f) = G, +30)-i+@u +3v)-]




Linear Transformation as Change of Basis\

(4,3)

u =(uy, uy) =u, -itu, -]

now interpret the columns of matrix T
as some vectors u and v (their coordinates in basis i, j)

/ =
coordinates of g in basisi,j qy u, v, 3] T~ coordinates of g in basis u,v
q=q,i+q, ] q=4u+3v

point q represented in different coordinate systems




Linear Transformation as Change of Basis\

(4,3)

u =(uy, uy) =u, -itu, -]

now interpret the columns of matrix T
as some vectors u and v (their coordinates in basis i, j)

Mg 18

Any matrix can be seen as a (linear) coordinate system basis!!!

4 ?7 7149,
Question: What’s the inverse matrix T1 ? 31 12 92
q,




Linear Transformation as Change of Basis\

_9 =(0xq))

u =(uy, uy) =u, -itu, -]

now interpret the columns of matrix T
as some vectors u and v (their coordinates in basis i, j)

q.| |u, v, H
qy ) T/ly Vy 3
Any matrix can be seen as a (linear) coordinate system basis!!!

{4}: Lo Jx | 4s coordinates of i i=i-u+i,-v
Question: What’s the inverse matrix T1 ? 3 14 4,119, andj inbasisu,v  J=Joutjv




Linear Transformation as Change of Basis\

Any matrix can be seen as a (linear) coordinate system basis!!!

Question: What is T if both coordinate systems have ortho-normal basis?




Linear Transformation as Change of Basis\

(0,1)

[T
1

i =(1,0)

Any matrix can be seen as a (linear) coordinate system basis!!!

Question: What is T if both coordinate systems have ortho-normal basis?

Then matrix T represents rotation, reflection, or their combination (rotoreflection) of the coordinate basis




Towards Homogeneous CoordinatN

Q: Can we represent translation by matrix multiplication?

very simple, but

'
X=X+ tx not a linear transformation in 2D
(- T(p+q)#=T(p)+T(q)
y=y+i, T(3p)# AT(p)
Answer: Yes, using and 3x3 matrices L
Homogeneous coordinates % homogeneous
: . coordinates
e represent coordinatesin 2 >V
dimensions with a 3-vector y |
— '_ - -] — — — —
1 0 7 ||x X+i,
' — . —
yio= 10 1 1 |y y+i,
1 0 0 1 1 1
~ Translation

matrix (3x3)




Translation

dExample of translation

Homogeneous Coordinates

##

\ 4

X
y
1

'

'

oS O =

oS = O

=<

x+t

y+ty

1




Homogeneous Coordinates (in gem

JAdd a 3rd coordinate to every 2D point

(%, y, w) represents a point at location (x/w, y/w)
(0, 0, 0) is not allowed

Advantages of

coordinate system:

< ] ]

A_
I\)_
><V

- simple matrix representation of
many useful transformations (W- 2, w-1, W)

represent the same 2D point
for any value of w




Homogeneous Coordinates (in gem

JAdd a 3rd coordinate to every 2D point

(%, y, w) represents a point at location (x/w, y/w)
(0, 0, 0) is not allowed

(%, vy, 0) represents a point at infinity

y (2,1,5)
Z (2,1,3)
Advantages of
homogeneous k3 (2,1.1)
coordinate system: < — g
1 2 X
- simple matrix representation of
many useful transformations

- allows to expand  with “points at i/";ﬁnity’
R’ (like for ) using finite numerical representation

+ o0 R’



Basic 2D Transformations via 3x3 W

yl=10 1 ¢, H vl=10 s, 0] H
i oo 1M 1l Lo o 1lh
Translate Scale
x' cos® —sin® 0]rx X 1 shy, 07X
y'|=|sin® cos® 0 H yI=[0o 1 0 [y]
1 0 o 1M 1l lo o 1l
Rotate Shear
all of the above are special cases of a general x: _ ?i b c]r*
Affine Transformation: Y|~ e fIY
w 0O 0 1ltw




Composing Affine Transformations\

QExample: { Z 2 ; ]compositioni;)l;f”r:ya?éfri]r;e transforms
0 0 1 (as easy to check)
/ * \
x| ([1 0 &x[cos® —sin® 0fsx 0 O) x|
YI=[10 1 #t|sm® cos® 0|0 sy Oy
W \_O 0 1] 0 0 1__0 0 1_/_w_
p = T(tty) R(©) S(sx,Sy) p

O In general: any affine transformation is a combination of
translation, rotation/reflection, and anisotropic scaling




Affine Transformations

- 1T _

LJAffine transformations are combinations of ... x, B Z, b cllx
ULinear 2D transformations, and Y= € f y
Translations _W_ _O 0 1 _ _W_

dProperties of affine transformations:
(JOrigin does not necessarily map to origin (new compared to 2x2 matrices)
ULines map to lines
Parallel lines remain parallel
ULength/distance ratios are preserved on parallel lines
(JRatios of areas are preserved
Closed under composition




Projective Transformations (a.k.a. homographies

transformations in homogeneous coordinate space via general 3x3 matrices

- 1 L
dProjective transformations ... a b c
JAffine transformations, and yi=|d e f|y
UProjective warps W g hoilly

Properties of projective transformations:
W Origin does not necessarily map to origin
Lines map to lines  (indeed, line of hom. points p means a-p=0 for some a. Then, b-Hp=0 for b=aH1)
Parallel lines do not necessarily remain parallel
(Non-parallel lines may become parallel
Distance/length or area ratios are not preserved
Closed under composition



Projective Transformations (a.ka. hom

Parallel lines do not necessarily remain parallel H
(Non-parallel lines may become parallel o A L
3 a b c|6
2|=|d e f
0 -1 1 1

o<

‘ (6,5,1)

A

. -

NOTE: “finite” point may transform to “point 4t infinity”




Projective Transformations (a.ka. hom

. . . 1
Parallel lines do not necessarily remain parallel H

Non-parallel lines may become parallel o '

o<

‘ (6,5,1)

A

. -

Y /NOTE: or “point at infinity” may transform“%o /finite” point




Projective Transformations (a.k.a. homographies

Distance/length or area ratios are not preserved

A

Example: distance |B’C’| remains finite, while |XB’| is infinite



Projective Transformations (a.ka. hom

dGeneral property to keep in mind  (Theorem 2.10 from Hartley&Zisserman)

O Aninvertible mapping # from a (homogeneous) plane P? onto P?preserves
straight lines iff there exists a non-singular 3x3 matrix A s.t.

d h(x)=H-x

forany X &€ PZ

That is, any transformation of a plane onto a plane that

preserves straight lines must be a homography.




2D image transformations

A
Y similarit\ plO]ELtl\ ©
translation
/y
Euchdean z
qﬁme >
x
Name Matrix #D.O.F. | Preserves: Icon
translation { I ’ t ]2 ; 2 orientation + - - - See Hartley and
2X.
. . Zisserman,
rigid (Euclidean) [ R ‘ t ]2><3 3 lengths + - - - Q 0. 44
similarity [ sR ‘ t ]2 ; S angles + - - - Q
X
affine [ A ]2><3 6 parallelism + - - - D
projective [ H ]3 ) 8 straight lines G
DX

These transformations are a nested set of groups
» Closed under composition and inverse is a member




Q: What best describes
the transformation
between two monsters
in this image?

A: translation

B: translation + scale

C: projective

T exza sz W inecaP1997 Shepard



Remaining parts of this lecture

* Estimation of parametric transformations (from corresponding points)

* Forward and inverse warps




Recovering Parametric Transformations

dWhat if we know f and g and want to recover transform T?
Ue.g. to better align images (image registration)
Wwilling to let user provide correspondences

Q: How many pairs of corresponding points do we need?



Translation: # correspondences? \

JHow many correspondences needed for translation?
JHow many Degrees of Freedom (DOF)? 10 o
dWhat is the transformation matrix? g
M=0 1 ¢,

0 0 1

UCMERCED




Euclidian: # correspondences?

X’ How to prove geometrically

that 2 pairs is enough?
(use rigid transformation invariants
to map an arbitrary point)

JHow many correspondences needed for translation+rotation?
UdHow many DOF?

WTransformation matrix?

cos® -—sinf c,
M=|smé cosf c,
0 0 1




Affine: # correspondences?

%’ How to prove geometrically

that 3 pairs is enough?
(use affine transformation invariants
to map an arbitrary point)

dHow many correspondences needed for affine?

UdHow many DOF? i
: o

UTransformation matrix: M

S QL &

-
f
1_

S O K



Algebraic point of view \

P, M P
- 0 T - -
X a b c Xi for any given pair of
p'- - M P, y'- —|ld e f y. corresponding points
l ’ | | (p;-p';)
1] 10 0 1)1

— / .
—

_ylfzdxl.+eyl.+f

Each pair of corresponding points , gives
two linear equations w.r.t 6 unknown coeg?aiépts f matrix M

with known point coordinates for  and |

3 pairs of corresponding points give 3x2 (=6§)Ilinear equaltions
allowing to resolve 6 unknown parameters




Projective: # correspondences? \

Harder, but possible
to prove geometrically
that 4 pairs is enough.

(can use only line preservation)

2\

JHow many correspondences needed for projective?
UdHow many DOF?

WTransformation matrix?



Projective: # correspondences? \

4 matches is enough to map all other points
(informal geometric proof based on line preservation)

q V4
/\ ’
|

UCMERCED




Projective: # correspondences? \

4 matches is enough to map all other points
(informal geometric proof based on line preservation)

Similarly, add
matches s-s’ and t-t’

UCMERCED




Projective: # correspondences? \

4 matches is enough to map all other points
(informal geometric proof based on line preservation)

Keep recursively subdividing quadrilaterals A, B, C, D
into smaller quadrilaterals while computing more
matching pairs of points and gradually increasing their
density

UCMERCED



Projective: # correspondences?

DNy

dHow many correspondences needed for projective? :4

D H oW ma ny DO F'P Easy to check that 4 pairs give only 4x2 (=8) equations!

What about 9 unknowns?

WTransformation matrix?

a b c
Homographies have only 8 DOF since scale is irrelevant M . d
(multiplying M by any factor does not change the actual transformation). — e
More on estimating homographies g h l

from 4 matching pairs of point - later in Topic 5. — -




Example: warping triangles (e.g.in am

B B’
: ?
AL £ T(x, ,
AR (xy) C
A A= 3 C A
Source Destination

Given two triangles: ABC and A'B’C’ in 2D (3 corresponding pairs)

Need to find a simple parametric transform T to transfer all pixels from
one to the other ?

a b c
JCommon answer: affine
M=|c d

(solve 6 linear equations with 6 unknowns)




Image warping \

assume a given transform T, e.g. rotation or projection

?
Ty) ]
Y A =SS YA =
» ., |
* fix,y) X ag(xyy’) NOTE: in practice,

one should consider
the canvas bounds

How to generate the transformed image g ? for the new image

e.g. - panorama stitching (next topic)

- texture mapping (3D reconstruction)
- novel view generation (special effects, virtual/augmented reality)

- data augmentation (network training)



Image warping

COMMENT: for simplicity, the slides ignore the bounds of the new image’s canvas,
but in your assignments you can not.

Given a coordinate transform (x’y’) = T(x,y) and a source image
flx,y), how do we compute a transformed image g(x’y’) = f (x,y)?



Forward warping

fix,y) * a(x;y’) |

Send each pixel (x,y) in the first image to its corresponding location
(x,y’) =T(x,y) inthe secondimage

Q: what if pixel lands “between” two pixels?



Forward Warping \

T(x,y)

1. il
X x’

fix,y) a(x;y’)

Send each pixel (x,y) in the first image to its corresponding location
(x,y’) =T(x,y) inthe secondimage

Q: what if pixel lands “between” two pixels?

A: distribute color among neighboring pixels (x’,y’)
— Known as “splatting”




Inverse warping

fix,y) * a(x;y’) |

Get each pixel (x,y’) in the second image from its corresponding
location (x,y) = T1(x’y’) in the first image

Q: what if pixel comes from “between” two pixels?



Inverse Warping \

L L

fix,y) a(x;y’)

dGet each pixel (x,y’) in the second image from its corresponding location
(x,y) = TX(x,y’) in the first image

Q: what if pixel comes from “between” two pixels?

A: Interpolate color value from neighbors
— nearest neighbor, bilinear, Gaussian, bicubic




Linear interpolation in vector Spaces\

NOTE: linear combination

Z N,V for V; e RN e.g. P+05v = P+0.5Q-P)
is called convex combination

if )
ZAFL X\ >0




Linear interpolation for functions \

Assume 1D image (scan line)
with intensity f(P) and f(Q) fi
for 2 pixels P and Q

»

f(P)
S < faP+(1-4) Q)
Linear interpolation of function O
f between P and Q: T~ fla)
P ® ® Q >
In fact, any linear function on [P,Q] AP+ (1-2) Q

must satisfy the equation above
(by definition of linear functions)




Bilinear interpolation (2 variate image intw

dSampling of f at (x,y):

(i, j+1) (i+1, j+1)
1-a a

(XI y) (]
QO
bI . ~
O O 1-a a

(i, (+1,)

1-b

pixels viewed as points in 2D

flz,y) = (1 —a)(1-0) f:z"j] . pixels viewed as square regions in 2D
+ab fli4+ 1,7+ 1] Interpolated intensity at (x,y) can
+(1—a)b  fli,7+ 1] be seen as a weighted average of

4 near-by pixels intensities where




Forward vs. inverse warping \

dQ: which is better?
A: usually inverse—eliminates holes

*however, it requires an invertible warp function—not always possible...

, A , A :3

X X “ E

O

- B_E i

\ ; S
L ©

E: 23

.......... S SS— Q 4‘7; E

N (S T T T R—— I S5 —

i ; E ©

i o <

< . ‘ Q

3 pixels



Inverse warping in python \

Bug Warning: students often specify
the transform from the input image
to the output image instead of its inverse

skimage.transform.warp (input_image, inverse_ma

Second argument must be a function
transforming coordinates in the output
image into their corresponding
coordinates in the input image.




