

CSE 185 Introduction to Computer Vision Lecture 5: Image Warping

Image Warping

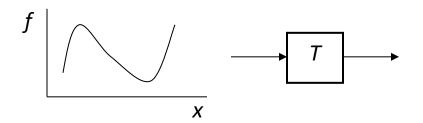
http://www.jeffrey-martin.com

Image Warping (a.k.a. Domain Transforms) Parametric transformations - Linear transformations of images via 2x2 matrices (a crash course on basic linear algebra) Affine transformations Homographies (3x3 transformation matrices) Estimation of parametric transformations (from corresponding) points) ☐ Forward and inverse warps - bilinear interpolation

Image Warping

□ point processing: change *range* of image

$$\square g(x) = T(f(x))$$



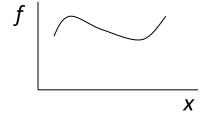


image warping: change domain of image

$$g(x) = f(T(x))$$

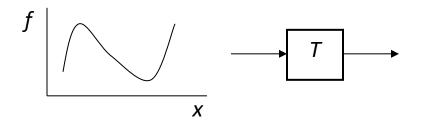


Image Warping

□ point processing: change *range* of image

$$\square g(x) = T(f(x))$$

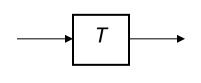
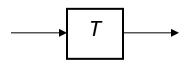


image warping: change domain of image

$$g(x) = f(T(x))$$



Parametric (global) warping

☐ Examples of parametric warps:

translation

rotation

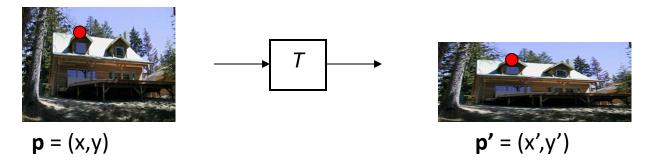
aspect

affine

perspective

cylindrical

Parametric (global) warping



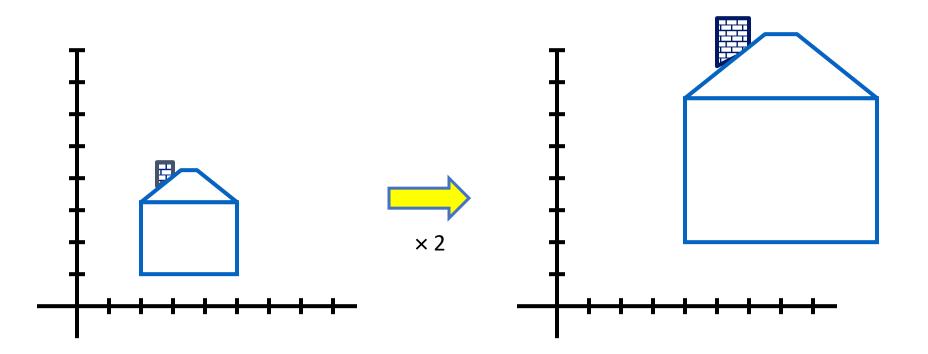
- ☐ Transformation T is a coordinate-changing machine:
- \square What does it mean that T is global?
 - ☐ the same transform for any point p
 - □described by just a few numbers (parameters)
- \Box Let's represent T as a matrix: p' = Mp (linear transforms)

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{M} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$g(p') = g(M \cdot p) = f(p) = f(M^{-1} \cdot p')$$

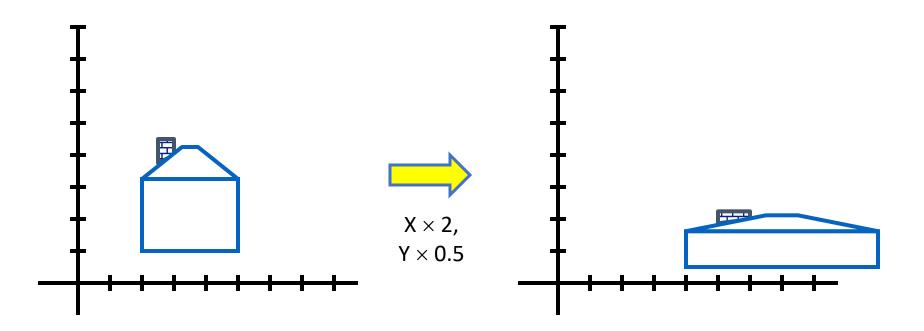
Scaling

- □ Scaling a coordinate means multiplying each of its components by a scalar
- □ *Uniform scaling* means this scalar is the same for all components:



Scaling

□ Non-uniform scaling: different scalars per component:



Scaling

☐ Scaling operation:

$$x' = ax$$

$$x' = ax$$
$$y' = by$$

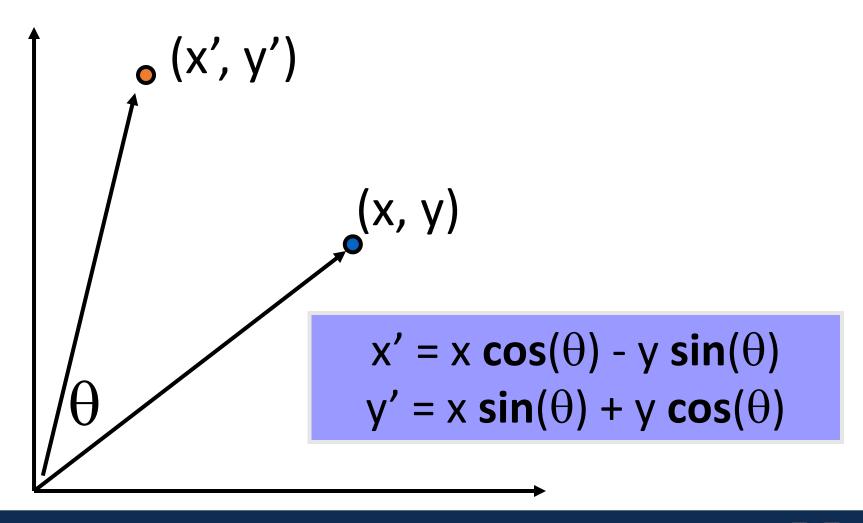
□Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

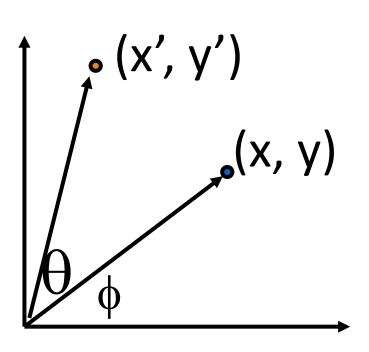
What's inverse of S?

scaling matrix S

2-D Rotation



2-D Rotation (derivation)



$$x = r \cos (\phi)$$

$$y = r \sin (\phi)$$

$$x' = r \cos (\phi + \theta)$$

$$y' = r \sin (\phi + \theta)$$

Trig Identity...

$$x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$$

 $y' = r \cos(\phi) \sin(\theta) + r \sin(\phi) \cos(\theta)$

Substitute...

$$x' = x \cos(\theta) - y \sin(\theta)$$

 $y' = x \sin(\theta) + y \cos(\theta)$

2-D Rotation

☐ This is easy to capture in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- \square Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear functions of θ ,
 - $\Box x'$ is a linear combination of x and y
 - $\Box y'$ is a linear combination of x and y
- □What is the inverse transformation?
 - \square Rotation by $-\theta$
 - ☐ For rotation matrices

$$\mathbf{R}^{-1} = \mathbf{R}^T$$

☐ What types of transformations can be represented with a 2x2 matrix?

2D Identity?

$$x' = x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Scale around (0,0)?

$$x' = s_x * x$$

$$y'=s_y*y$$

$$\begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 \\ 0 & \mathbf{s}_{y} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

☐What types of transformations can be represented with a 2x2 matrix?

2D Rotate around (0,0)?

$$x' = \cos \Theta * x - \sin \Theta * y$$

$$y' = \sin \Theta * x + \cos \Theta * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Shear?

$$x' = x + sh_x * y$$
$$y' = y$$

$$\left[\begin{array}{c} x' \\ y' \end{array}\right] = \left[\begin{array}{cc} 1 & sh_x \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

☐What types of transformations can be represented with a 2x2 matrix?

2D Mirror about Y axis?

$$x' = -x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror over (0,0)?

$$x' = -x$$
$$y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

☐What types of transformations can be represented with a 2x2 matrix?

2D Translation?

$$x' = x + t_x$$
 $y' = y + t_y$
NO!

Only linear 2D transformations can be represented with a 2x2 matrix

All 2D Linear Transformations

- ☐ Linear transformations are combinations of ...
 - ☐ Scale,
 - ☐ Rotation,
 - \square Shear, and
 - ☐ Mirror

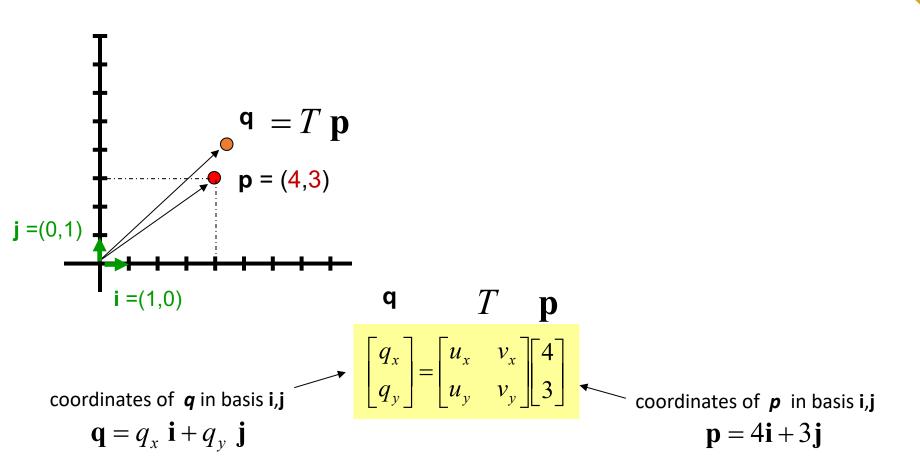
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- □ Properties of linear transformations:
 - ☐ Origin maps to origin
 - ☐ Lines map to lines
 - ☐ Parallel lines remain parallel
 - ☐ Distance or length ratios are preserved on parallel lines
 - ☐ scaling of length/distances depends on (line) orientation only (see next slide)
 - ☐ Ratios of areas are preserved
 - ☐ Closed under composition

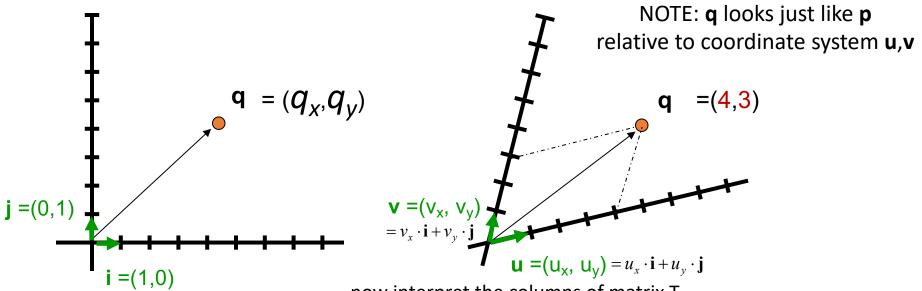
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} i & j \\ k & l \end{bmatrix} \begin{bmatrix} s & q \\ r & t \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

☐ See pp. 40-41 of Hartley and Zisserman "Multiple View Geometry" (2nd edition)

Linear Transformation as Space Deformation



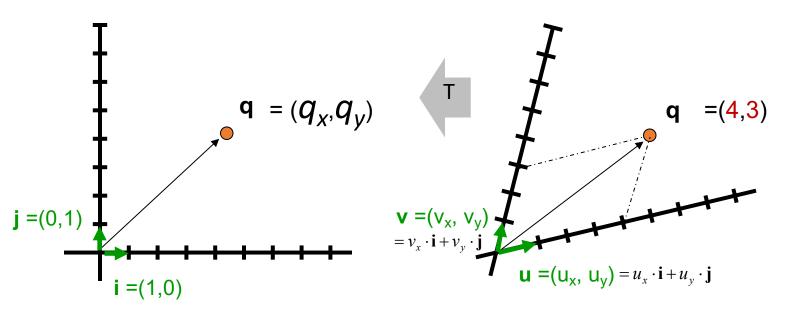
point **p** is transformed into new point **q**



now interpret the columns of matrix T as some vectors **u** and **v** (their coordinates in basis **i**, **j**)

coordinates of
$$\mathbf{q}$$
 in basis \mathbf{i} , \mathbf{j}
$$\mathbf{q} = \mathbf{q}_x \ \mathbf{i} + \mathbf{q}_y \ \mathbf{j}$$

$$\mathbf{q} = 4 \cdot (u_x \cdot \mathbf{i} + u_y \cdot \mathbf{j}) + 3 \cdot (v_x \cdot \mathbf{i} + v_y \cdot \mathbf{j}) = (4 \cdot u_x + 3 \cdot v_x) \cdot \mathbf{i} + (4 \cdot u_y + 3 \cdot v_y) \cdot \mathbf{j}$$
 Indeed, $\mathbf{q} = 4 \cdot (u_x \cdot \mathbf{i} + u_y \cdot \mathbf{j}) + 3 \cdot (v_x \cdot \mathbf{i} + v_y \cdot \mathbf{j}) = (4 \cdot u_x + 3 \cdot v_x) \cdot \mathbf{i} + (4 \cdot u_y + 3 \cdot v_y) \cdot \mathbf{j}$



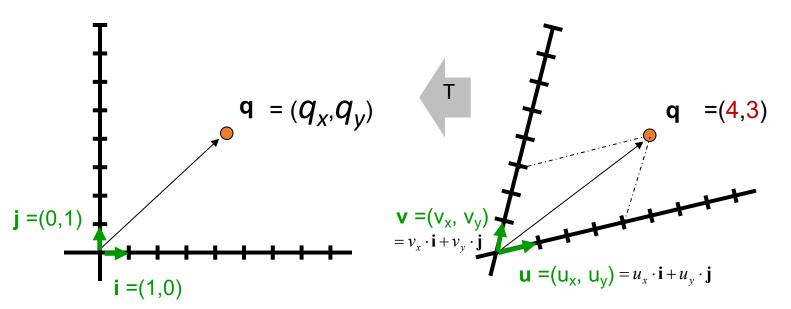
now interpret the columns of matrix T as some vectors **u** and **v** (their coordinates in basis **i**, **j**)

coordinates of
$$\mathbf{q}$$
 in basis \mathbf{i} , \mathbf{j}

$$\mathbf{q} = q_x \ \mathbf{i} + q_y \ \mathbf{j}$$

$$\mathbf{q} = 4\mathbf{u} + 3\mathbf{v}$$

point q represented in different coordinate systems



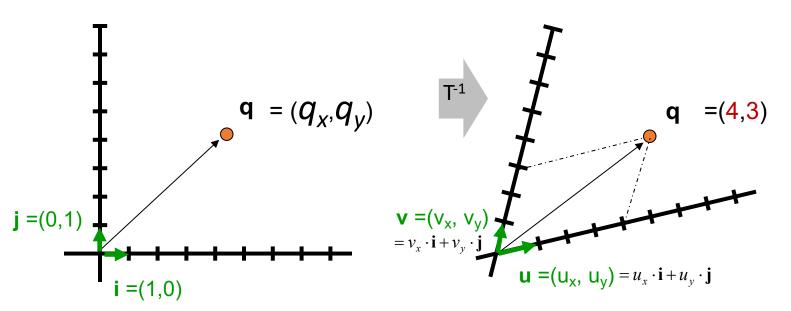
now interpret the columns of matrix T as some vectors **u** and **v** (their coordinates in basis **i**, **j**)

$$\begin{bmatrix} q_x \\ q_y \end{bmatrix} = \begin{bmatrix} u_x & v_x \\ u_y & v_y \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

Any matrix can be seen as a (linear) coordinate system basis!!!

Question: What's the inverse matrix T-1?

$$\begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} q_x \\ q_y \end{bmatrix}$$



now interpret the columns of matrix T as some vectors **u** and **v** (their coordinates in basis **i**, **j**)

$$\begin{bmatrix} q_x \\ q_y \end{bmatrix} = \begin{bmatrix} u_x & v_x \\ u_y & v_y \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

Any matrix can be seen as a (linear) coordinate system basis!!!

Ouestion: What's the inverse matrix T-1?

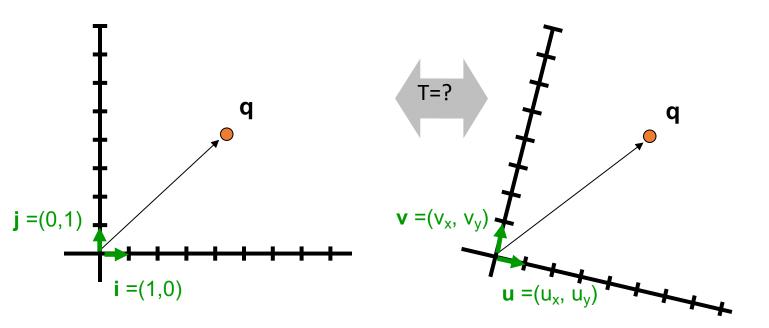
Ouestion: What's the inverse matrix T-1?

Question: What's the inverse matrix T-1?

$$\begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} i_x & j_x \\ i_y & j_y \end{bmatrix} \begin{bmatrix} q_x \\ q_y \end{bmatrix}$$

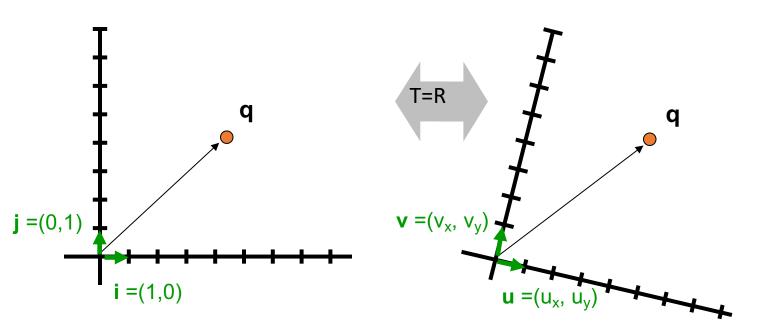
and j in basis u,v

 $\mathbf{i} = i_x \cdot \mathbf{u} + i_y \cdot \mathbf{v}$ $\mathbf{j} = j_x \cdot \mathbf{u} + j_y \cdot \mathbf{v}$



Any matrix can be seen as a (linear) coordinate system basis!!!

Question: What is T if both coordinate systems have ortho-normal basis?



Any matrix can be seen as a (linear) coordinate system basis!!!

Question: What is T if both coordinate systems have **ortho-normal basis**?

Then matrix T represents rotation, reflection, or their combination (rotoreflection) of the coordinate basis

Towards Homogeneous Coordinates

Q: Can we represent translation by matrix multiplication?

$$x' = x + t_x$$

$$y' = y + t_v$$

very simple, but $m{x'} = m{x} + m{t}_{m{x}}$ not a *linear* transformation *in 2D* $m{y'} = m{y} + m{t}_{m{y}}$ T(p+q)
eq T(p) + T(q) $T(\lambda p)
eq \lambda T(p)$

$$T(p+q) \neq T(p) + T(q)$$

 $T(\lambda p) \neq \lambda T(p)$

Answer: Yes, using homogeneous coordinates and 3x3 matrices

Homogeneous coordinates

represent coordinates in 2 dimensions with a 3-vector

$$\begin{bmatrix} x \\ y \end{bmatrix} \xrightarrow{\text{homogeneous} \\ \text{coordinates}} \begin{array}{c} x \\ y \\ 1 \end{array}$$

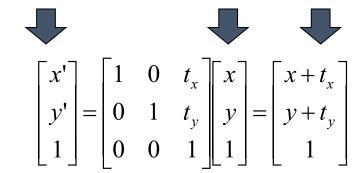
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}$$
Translation

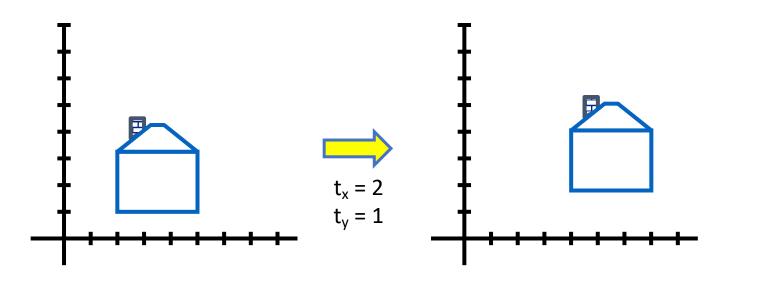
matrix (3x3)

Translation

☐ Example of translation

Homogeneous Coordinates



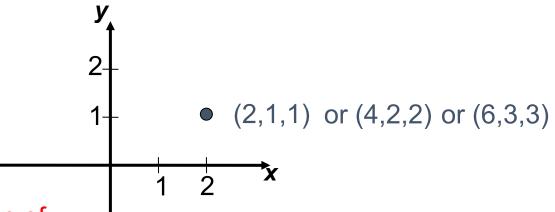


Homogeneous Coordinates (in general)

- ☐Add a 3rd coordinate to every 2D point
 - \Box (x, y, w) represents a point at location (x/w, y/w)
 - \square (0, 0, 0) is not allowed

Advantages of homogeneous coordinate system:

 simple matrix representation of many useful transformations

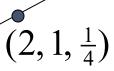


represent the same 2D point for any value of w

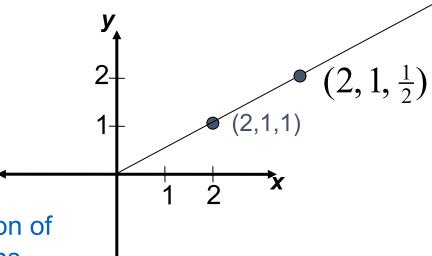
 $(w\cdot 2, w\cdot 1, w)$

Homogeneous Coordinates (in general)

- ☐Add a 3rd coordinate to every 2D point
 - \Box (x, y, w) represents a point at location (x/w, y/w)
 - \square (0, 0, 0) is not allowed
 - \square (x, y, 0) represents a *point at infinity*



Advantages of homogeneous coordinate system:



- simple matrix representation of many useful transformations
- allows to expand with "points at infinity" R^2 (like for)

using finite numerical representation

Basic 2D Transformations via 3x3 matrices

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Translate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Scale

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{sh_x} & \mathbf{0} \\ \mathbf{0} & 1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Rotate

Shear

all of the above are special cases of a general Affine Transformation:

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Composing Affine Transformations

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & tx \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{p}' = \mathbf{T}(t_x, t_y) \qquad \mathbf{R}(\Theta) \qquad \mathbf{S}(\mathbf{s}_x, \mathbf{s}_y) \qquad \mathbf{p}$$

☐ In general: any affine transformation is a combination of translation, rotation/reflection, and anisotropic scaling

Affine Transformations

- - ☐ Translations

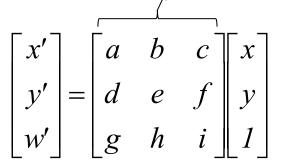
□ Affine transformations are combinations of ...

□ Linear 2D transformations, and
□ Translations
$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- ☐ Properties of affine transformations:
 - Origin does not necessarily map to origin (new compared to 2x2 matrices)
 - ☐ Lines map to lines
 - ☐ Parallel lines remain parallel
 - ☐ Length/distance ratios are preserved on parallel lines
 - ☐ Ratios of areas are preserved
 - □Closed under composition

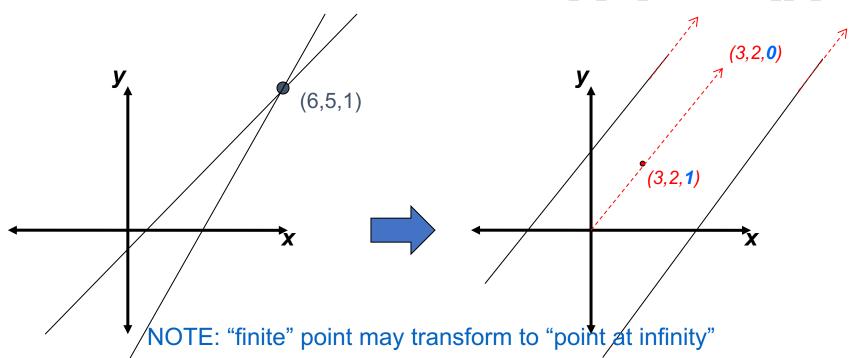
transformations in homogeneous coordinate space via general 3x3 matrices

- ☐ Projective transformations ...
 - ☐ Affine transformations, and
 - ☐ Projective warps
- ☐ Properties of projective transformations:
 - ☐ Origin does not necessarily map to origin
 - Lines map to lines (indeed, line of hom. points p means $a \cdot p = 0$ for some a. Then, $b \cdot Hp = 0$ for $b = aH^{-1}$)
 - ☐ Parallel lines do not necessarily remain parallel
 - □ Non-parallel lines may become parallel
 - □ Distance/length or area ratios are not preserved
 - □Closed under composition



- ☐ Parallel lines do not necessarily remain parallel
- □ Non-parallel lines may become parallel

$$\begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 5 \\ 1 \end{bmatrix}$$

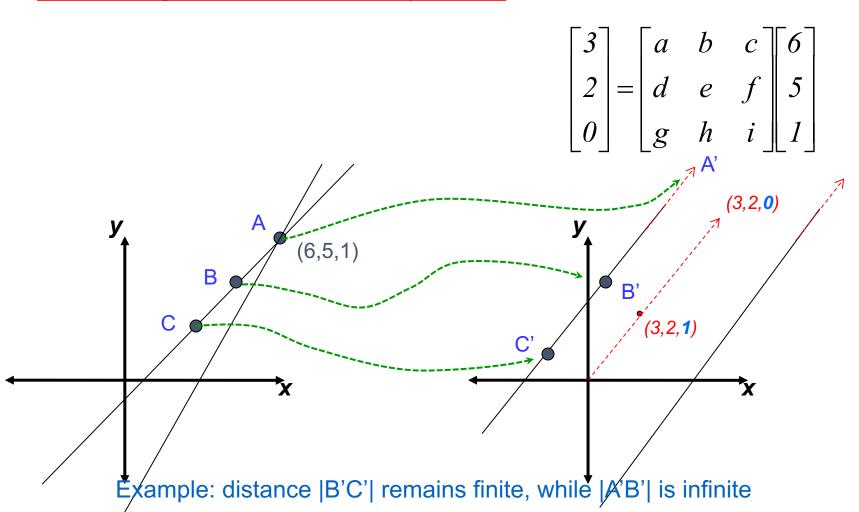


- ☐ Parallel lines do not necessarily remain parallel
- □ Non-parallel lines may become parallel

$$\begin{bmatrix} 12 \\ 10 \\ 2 \end{bmatrix} = \begin{bmatrix} a' & b' & c' \\ d' & e' & f' \\ g' & h' & i' \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$$



□ <u>Distance/length or area ratios are not preserved</u>



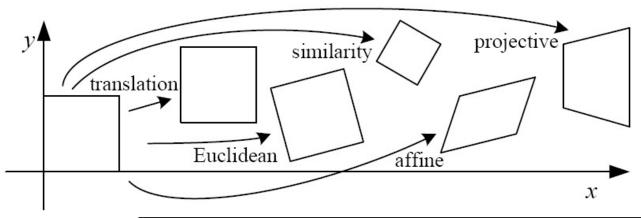
Projective Transformations (a.k.a. homographies)

- ☐General property to keep in mind (Theorem 2.10 from Hartley&Zisserman)
- An invertible mapping h from a (homogeneous) plane P^2 onto P^2 preserves straight lines <u>iff</u> there exists a non-singular 3x3 matrix H s.t.

$$h(x) = H \cdot x$$
 for any $x \in \mathbf{P}^2$

That is, any transformation of a plane onto a plane that preserves straight lines must be a *homography*.

2D image transformations



Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	2	orientation $+ \cdots$	
rigid (Euclidean)	$igg[egin{array}{c c} igg[oldsymbol{R} & oldsymbol{t} \end{array}igg]_{2 imes 3}$	3	lengths + · · ·	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2 \times 3}$	4	angles $+\cdots$	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

See Hartley and Zisserman, p. 44

These transformations are a nested set of groups

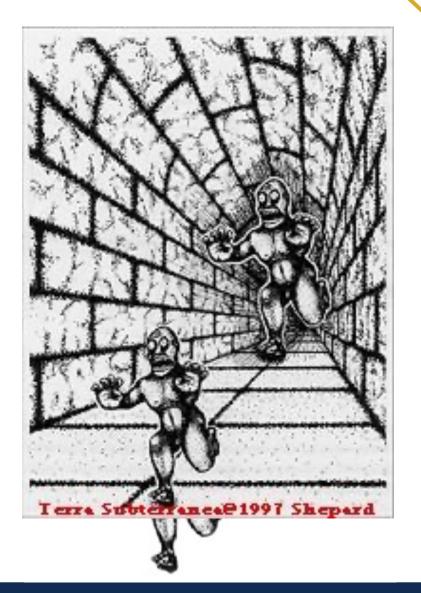
• Closed under composition and inverse is a member

Q: What best describes the transformation between two monsters in this image?

A: translation

B: translation + scale

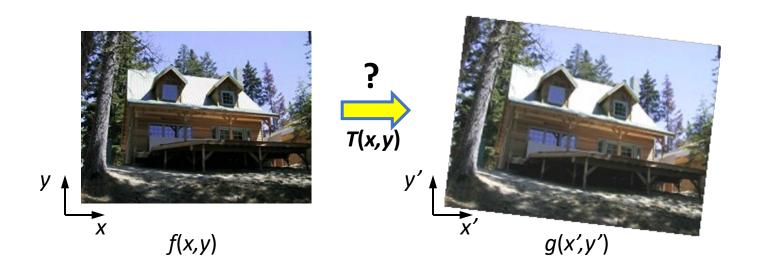
C: projective



Remaining parts of this lecture

- Estimation of parametric transformations (from corresponding points)
- Forward and inverse warps

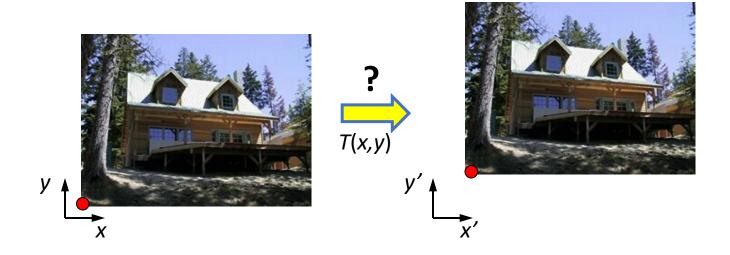
Recovering Parametric Transformations



- \square What if we know f and g and want to recover transform T?
 - ☐ e.g. to better align images (image registration)
 - □willing to let user provide correspondences

Q: How many pairs of corresponding points do we need?

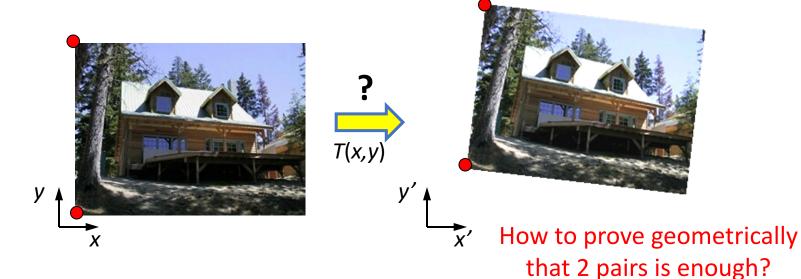
Translation: # correspondences?



- ☐ How many correspondences needed for translation?
- ☐ How many Degrees of Freedom (DOF)?
- □What is the transformation matrix?

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & c_x \\ 0 & 1 & c_y \\ 0 & 0 & 1 \end{bmatrix}$$

Euclidian: # correspondences?



(use rigid transformation invariants to map an arbitrary point)

- ☐ How many correspondences needed for translation+rotation?
- ☐ How many DOF?
- ☐ Transformation matrix?

$$\mathbf{M} = \begin{bmatrix} \cos \theta & -\sin \theta & c_x \\ \sin \theta & \cos \theta & c_y \\ 0 & 0 & 1 \end{bmatrix}$$

Affine: # correspondences?

How to prove geometrically that 3 pairs is enough?
(use affine transformation invariants to map an arbitrary point)

- ☐ How many correspondences needed for affine?
- ☐ How many DOF?
- ☐ Transformation matrix?

$$\mathbf{M} = \begin{bmatrix} a & b & c \\ c & d & f \\ 0 & 0 & 1 \end{bmatrix}$$

Algebraic point of view

$$\mathbf{p'}_{i} = M \mathbf{p}_{i}$$

$$\begin{bmatrix} x'_{i} \\ y'_{i} \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{i} \\ y_{i} \\ 1 \end{bmatrix}$$

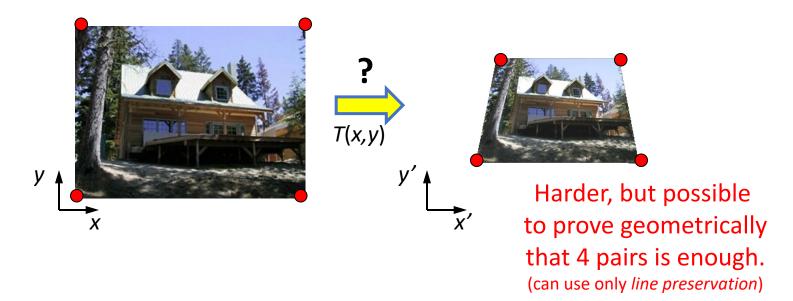
for any given pair of corresponding points $(\mathbf{p}_i, \mathbf{p}'_i)$

$$\Rightarrow \begin{cases} x_i' = ax_i + by_i + c \\ y_i' = dx_i + ey_i + f \end{cases}$$

6 unknown parameters (variables)

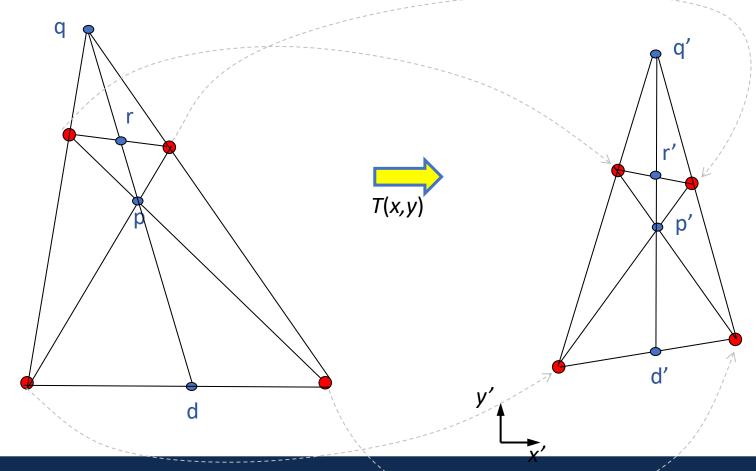
two linear equations w.r.t 6 unknown coefficients of matrix M with known point coordinates for and \mathbf{n} .

 \mathbf{p}_i $\mathbf{p'}_i$ 3 pairs of corresponding points give 3x2 (=6) linear equations allowing to resolve 6 unknown parameters

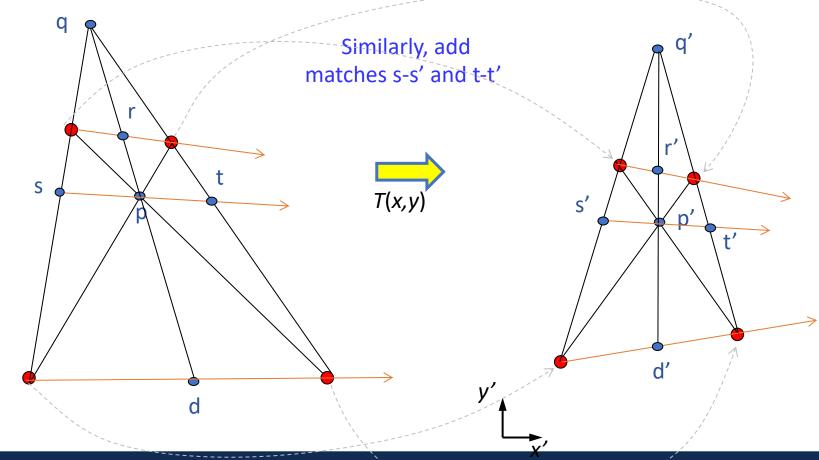


- ☐ How many correspondences needed for projective?
- ☐ How many DOF?
- ☐ Transformation matrix?

4 matches is enough to map all other points (informal geometric proof based on line preservation)

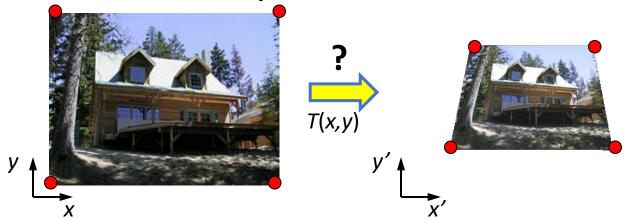


4 matches is enough to map all other points (informal geometric proof based on line preservation)



4 matches is enough to map all other points (informal geometric proof based on line preservation)

Keep recursively subdividing quadrilaterals A, B, C, D into smaller quadrilaterals while computing more matching pairs of points and gradually increasing their density S B' T(x,y)D' D



☐ How many correspondences needed for projective?

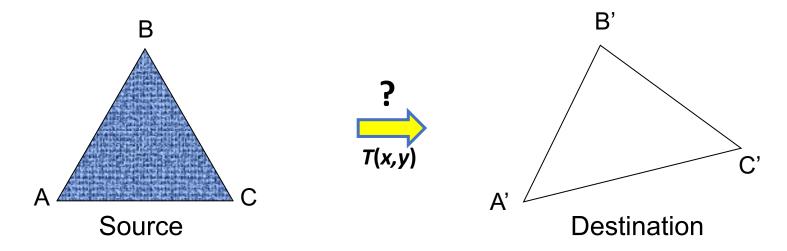
=4

- ☐ How many DOF?
- ☐ Transformation matrix?

Easy to check that 4 pairs give only 4x2 (=8) equations! What about 9 unknowns?

$$\mathbf{M} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

Example: warping triangles (e.g. in a mesh)



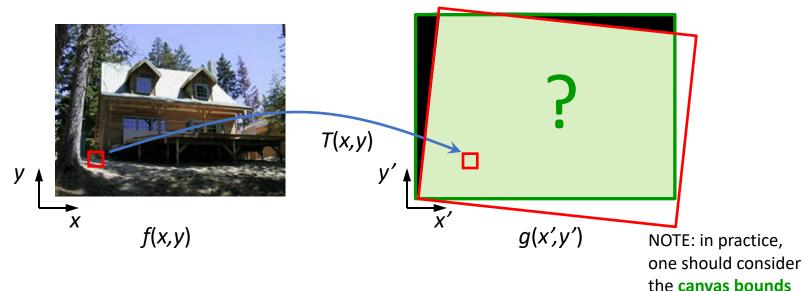
- ☐ Given two triangles: ABC and A'B'C' in 2D (3 corresponding pairs)
- □ Need to find a **simple parametric transform T** to transfer all pixels from one to the other?
- □Common answer: **affine**

$$\mathbf{M} = \begin{bmatrix} a & b & c \\ c & d & f \\ 0 & 0 & 1 \end{bmatrix}$$

(solve 6 linear equations with 6 unknowns)

Image warping

assume a given transform T, e.g. rotation or projection



How to generate the transformed image g?

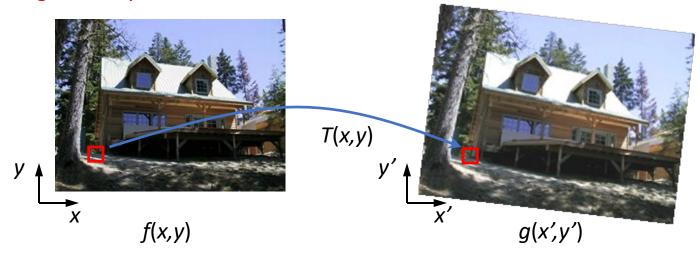
e.g. - panorama stitching (next topic)

- texture mapping (3D reconstruction)
 - novel view generation (special effects, virtual/augmented reality)
- data augmentation (network training)

for the new image

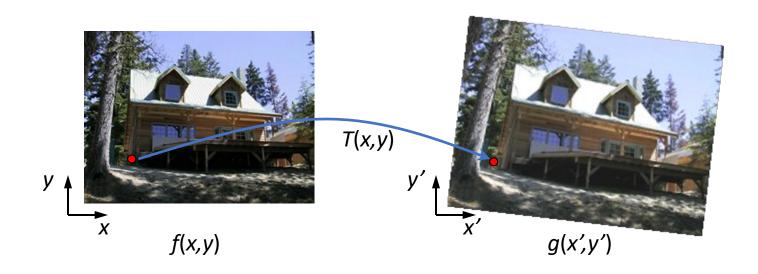
Image warping

COMMENT: for simplicity, the slides ignore the bounds of the new image's canvas, but in your assignments you can not.



☐Given a coordinate transform (x',y') = T(x,y) and a source image f(x,y), how do we compute a transformed image g(x',y') = f(x,y)?

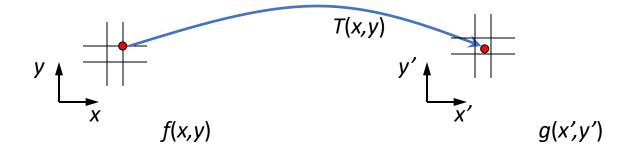
Forward warping



Send each pixel (x,y) in the first image to its corresponding location (x',y') = T(x,y) in the second image

Q: what if pixel lands "between" two pixels?

Forward warping



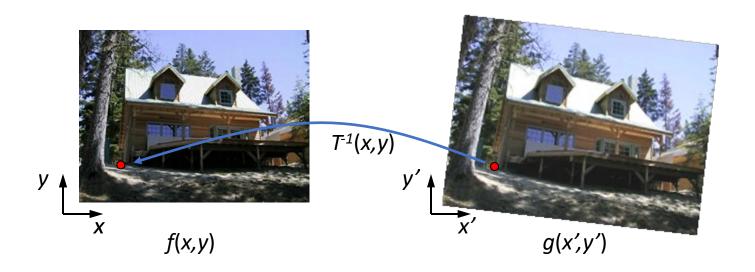
 \square Send each pixel (x,y) in the first image to its corresponding location (x',y') = T(x,y) in the second image

Q: what if pixel lands "between" two pixels?

A: distribute color among neighboring pixels (x',y')

Known as "splatting"

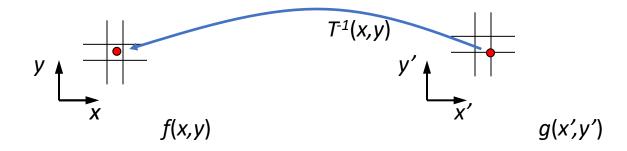
Inverse warping



 \square Get each pixel (x',y') in the second image from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image

Q: what if pixel comes from "between" two pixels?

Inverse warping



Get each pixel (x',y') in the second image from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image

Q: what if pixel comes from "between" two pixels?

A: Interpolate color value from neighbors

- nearest neighbor, bilinear, Gaussian, bicubic

Linear interpolation in vector spaces

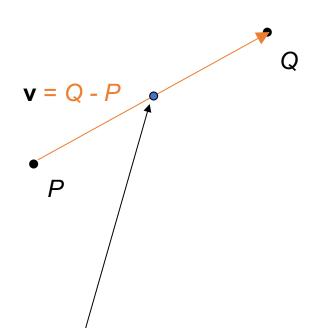
Any point between *P* and *Q* can be obtained as a linear combination

$$\lambda P + (1-\lambda) Q$$

NOTE: linear combination

$$\sum_{i \in \mathcal{C}} \lambda_i V_i \quad \text{for } V_i \in \mathcal{R}^N$$
 is called convex combination if
$$\qquad .$$

$$\sum_{i} \lambda_i = 1, \ \lambda_i \ge 0$$



e.g.
$$P + 0.5v = P + 0.5(Q - P)$$

= $0.5P + 0.5 Q$

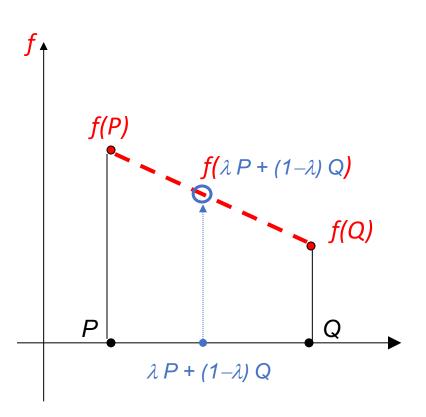
Linear interpolation for functions

Assume 1D image (scan line) with intensity f(P) and f(Q) for 2 pixels P and Q

Linear interpolation of function *f* between *P* and *Q*:

$$f(\lambda P + (1-\lambda) Q) = \lambda f(P) + (1-\lambda) f(Q)$$

In fact, any linear function on [P,Q] must satisfy the equation above (by definition of *linear functions*)



Bilinear interpolation (2 variate image intensity function)

 \square Sampling of f at (x,y):

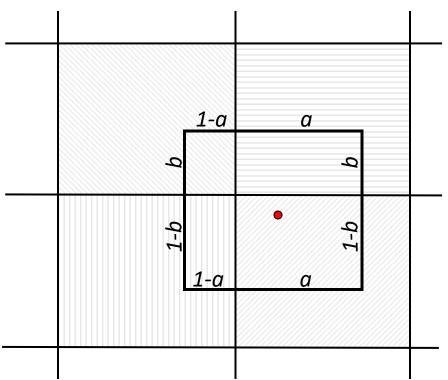
$$(i, j+1) \bigcirc \qquad \bigoplus^{(i+1, j+1)} \bigcirc$$

$$(i, j) \bigcirc \qquad (i+1, j)$$

$$(i, j) \bigcirc \qquad (i+1, j)$$

pixels viewed as points in 2D

$$f(x,y) = (1-a)(1-b) f[i,j] +a(1-b) f[i+1,j] +ab f[i+1,j+1] +(1-a)b f[i,j+1]$$



pixels viewed as square regions in 2D

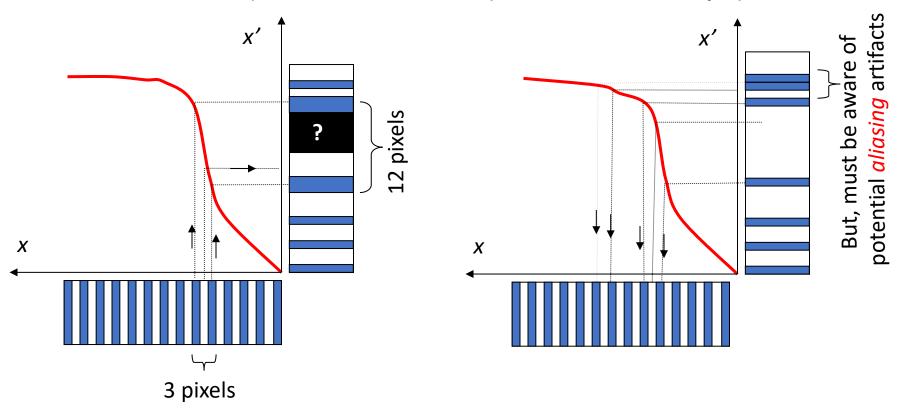
Interpolated intensity at (x,y) can be seen as a weighted average of 4 near-by pixels intensities where

Forward vs. inverse warping

□Q: which is better?

A: usually inverse—eliminates holes

•however, it requires an invertible warp function—not always possible...



inverse warping in python

Bug Warning: students often specify the transform from the input image to the output image instead of its inverse

skimage.transform.warp (input_image, inverse_map,...)

Second argument <u>must be</u> a function transforming coordinates in the output image into their corresponding coordinates in the input image.

