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Geometric Model Fitting

« Feature matching (piap'i)

* Model fitting (e.g. homography estimation for panoramas)
« How many points to choose?

» Least square model fitting
« RANSAC (robust method for model fitting)

* Multi-model fitting problems



Flashbacks: feature detectors

Harris corners

python code from “FeaturePoints.ipynb”

from skimage.feature import corner_harris, corner_subpix, corner_peaks from skimage.feature import blob_dog

hc_filter = corner_harris(image_gray) blobs = blob_dog(image_gray)
peaks = corner_peaks(hc_filter)



Flashbacks: feature descriptors

We know how to detect points
Next question: How to match them?

need point descriptors that should be
e Invariant (e.g. to gain/bias, rotation, projection, etc)
e Distinctive (to avoid false matches)



Flashbacks: MOPS descriptor
8x8 oriented patch

« Sampled at 5 x scale
Bias/gain normalization: I' = (I — u)/o

Another popular i1dea (SIFT): use gradient orientations inside the patch
as a descriptor (also invariant to gain/bias)



Flashbacks: MOPS descriptor
8x8 oriented patch

« Sampled at 5 x scale
Bias/gain normalization: I' = (I — u)/o

Popular descriptors: MOPS, SIFT, SURF, HOG, BRIEF, many more...



Feature matching




Feature matching

Optimal matching:
« Bipartite matching, quadratic assignment (QA) problems
— too expensive

Common simple approach:

« use SSD (sum of squared differences) between two descriptors (patches).
« for each feature in image 1 find a feature in image 2 with the lowest SSD

« acceptamatchif SSD(patch1,patch2) <T (threshold)



Feature matching

SSD(patch1,patch2) < T

How to set threshold T?
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Feature matching

A better way [Lowe, 1999]:
« SSD of the closest match (SSD1)
« SSD of the second-closest match (SSD2)

» Accept the best match if it is much better than the second-best match
(and the rest of the matches)

corect matches | .
— — —incorrect matches | .

easier to select
4_ ------- threShOld T for
e N S S decision test

probability density
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Python example (BRIEF descriptor)

from skimage.feature import (corner harris, corner peaks, plot matches, BRIEF, match_descriptors)

keypointsL = corner peaks(corner harris(imL), threshold rel=0.0005, min_distance=5)
keypointsR = corner_peaks(corner harris(imR), threshold rel=0.0005, min_distance=5)

extractor = BRIEF()
extractor.extract(imL, keypointsL) ﬁnd the closest match p 2

keypointsL = keypointsL[extractor.mask]
for any feature p

descriptorsL = extractor.descriptors

extractor.extract(imR, keypointsR)
keypointsR = keypointsR[extractor.mas
descriptorsR = extractor.descriptor;

crosscheck: keep pair (p,p’)
/ only if p 1s the best match for p’

matchesLR = match_descriptors(descriptorsL, descriptorsR, cross_check=True)



How to fit a homorgaphy???

What problems do you see for homography estimation?



How to fit a homorgaphy???

What problems do you see for homography estimation?

Issue 1: the number of matches (p,,p', ) is more than 4

Answer: model fitting via “least squares” (later, slide 21)

Issue 2: too many outliers or wrong matches (P i P'l- )

Answer: robust model fitting via RANSAC (later, slide 35)



Recall: Homography from 4 points




Recall: Homography from 4 points

Consider one match (point-correspondence) P = (x,)/) — p'= (X', J/')

wx' a b c
p'=Hp wy'|=|d e f |y
w g h 1|1

After eliminating w = gx+hy+i :
—  ax+by+c—gxx'-hyx'-ix'=0
dx+ey+ f —gxy'=hyy'-iy'=0

Two equations linear w.r.t unknown coefficients of matrix H
and quadratic w.r.t. known point coordinates (x,y,x’,y’)



Recall: Homography from 4 points

Consider 4 point-correspondences p, =(x,y,) — p' =" ")

wx' a b c|x

l

p' = Hp, wy |=ld e f|y for i=1,2,3,4
w, g h 1|1

l

Special case of
DLT method

' ' S B
ax, +by, +c—gx,x',—hyx',—ix', =0 (see p.89
in Hartley and

: ! ' M |
dxi + e.yi +f _gxly i_hyiy i_lyi — 0 Zisserman)
Can be written as matrix multiplication Ai ch=0 fori=1,2,3.4

where h — [ d b C d e f g ]’l I ] ! is a vector of unknown coefficients in H

. . . . ' !
and Ai is a 2x9 matrix based on known point coordinates XoVio X5V



Recall: Homography from 4 points

Consider 4 point-correspondences p, =(x,y,) — p' =" ")

p'l, — le — A,- -h=0 for 1=1,2,3,4
2x9 9x1  2x1
z‘l
‘AKZ
All four matrix equations can be “stacked up” as -h=0
‘Ak3 8x1
A4

or Ah:O C8x9

8x9 Ox1 8x1

Q: how many solutions for h? A:none B:one C: many



Recall: Homography from 4 points

Consider 4 point-correspondences p, =(x,y,) — p' =" ")

p'i:Hpi — Ah:O (*)
8x9 9x1 8x1

for 1=1,2,3.,4

8 linear equations, 9 unknowns: trivial solution h=0?

All solutions h form the (right) null space of A of dimension 1,
but they represent the same transformation (as homographies can be scaled)

as discussed in topic 7,

To find one specific solution h, for now fix one element, e.g. i =1 this may not work

more generally, should
: ° — —
A -h, A,
8x8 8x1

fix norm ||h||=1 (later)
8x1

first 8 columns of A first 8 rows of h 9th columns of A



Recall: Homography from 4 points

Consider 4 point correspondences p, =(x,y,) — p'. =" "))

p;=Hp, = As-hy = —Ag
8x8 8x1

8x1

for 1=1,2,3.,4



More than 4 points

Consider 4 point correspondences p, =(x,y,) — p'. =" "))

' — [ ] _— —
fori=1,2,3,4 8x8 8x1 8x1
Questions:

What if 4 points correspondences are known with error?

Are there any benefits from knowing more point correspondences?

First, consider a simpler model fitting problem...



Simpler example: line fitting

Assume a set of data points (x, x,), (x,.X,), (X, X,), -..
(e.g. person’s height vs. weight)

We want to fit a model (e.g. a line) to predict X from X
a-X+b=X'

How many pairs (X..X;) do we need to find a and b5?

Xa+b=X,
X,a+b=X,
X, Ia] [x, |
X, I1|b] |x, T

A - — B

x=A"'-B




over-constrained

Simpler example: line fitting

Assume a set of data points (x, x,), (x,.X,), (X,.X,), ...

(e.g. person’s height vs. weight)

We want to fit a model (e.g. a line) to predict X from X
a- X+b=X'

What if the data points (X,.X;) are noisy?

-, this problem is also known as

X 1 1 X 1 A X “linear regression” problem

X 5 1| a X 5 a-X+b=X'

X, 1|b] |x

; sum of squared
[ "t A_ _B | ® vertical errors in this example
T o —
. : /
min H Ax — BH (least-squares) > X
x | J

. _ _
where A ' =V -W ™' -U" isa pseudo-inverse
X = A_l - B based on SVD decomposition A =U -W -V’

(in python, one can use svd function in library numpy.linalg)




SVD: rough idea

embed scale rotate
[’ where U and V are matrices with ortho-normal
A  — 1 / ° l l ° l columns and W is diagonal with elements w; >0
M>N MxN MxN NxN NxN (see “Numerical Recipes in C”, edition 2, Sec. 2.6)
3
‘R
AR T

A Q: where are the points from R? mapped to?
"X A point B: line C:plane D: whole R?

v

v

range of transformation 4
(2D subspace of R°)

How does SVD help to solve least-squares ? Ui (column-vectors of U) form

the basis of this subspace
X

Equivalent (fast to compute) expression

projection of B onto range of 4 x = (ATA)1-AT-B
Nx1 NxN NxM Mxl1
Indeed: A7A Vwzyr
—1 _ Ir p;r—] 0 (ATA)1-AT P VW-UT
X = A ° B — ) ) If M>>N computing inverse of positive

semi-definite NxN matrix ATA can be
faster than SVD of MxN matrix A



Least squares line fitting

Data generated as X =a X, + b+ 6X, for a=0.2, b= 20 and Normal noise oX,

l

150
100 |
50 |
X! '
i Ky
ot
—50 | .
+ + data points (w. noise & outliers)
— least square fit (a=0.19, b=20.1)
—-100 L .

—300 —200 —100 0 100 200 300

X,

'/



Least squares fail
In presence of outliers

Data generated as X =a X, + b+ 6X, for a=0.2, b= 20 and Normal noise oX,

l

150

100

50

+ outliers

X! o
7
_50 -
.0

—100 | g:,
+ + data points (w. noise & outliers) Lt
— least square fit (a=0.05, b=12.5)

-150 . . L A '

—300 —200 -100 0 100 200 300

X,

'/

For cases with outliers we need a more robust method
(e.g. RANSAC, coming soon)



Model fitting robust to outliers

We need a method that can separate inliers from outlliers

RANSAC

random sampling

consensus
[Fischler and Bolles, 1981]



RANSAC (for line fitting example)

150

100

50 f

X!

—50 }

—100

+ data points (w. noise & outliers)

—150

—300

—200 —100 0

X

l

100

200

1.

randomly sample
two points from the set,
get a line



RANSAC (for line fitting example)

# of inliers = 68

150
1. randomly sample
two points from the set,
get a line

100

50 | e ve
2. count inliers p

for threshold 7
|p=1]| <T

—50 }

—100

+ data points (w. noise & outliers)

_150 ! ! L ! !
—300 —200 —100 0 100 200 300

X

l




RANSAC (for line fitting example)

# of inliers = 24

150
1. randomly sample
100 | | two points from the set,
.l get a line
50 | oy
2. count inliers p
for threshold 7
0}
X!
l lp=Il =T
—50 }
, 3. repeat
.J
—100 | g‘ ~
+ data points (w. noise & outliers)
—159300 —2‘00 —lAOO 0 160 260 300

X

l



RANSAC (for line fitting example)

150

# of inliers = 93

100

50 f

X!
i
_50 -
L
.0
-100 ¥
H
+ data points (w. noise & outliers)
-150 . . ' L '
—300 —200 -100 0 100 200

X

l

1.

randomly sample
two points from the set,
get a line

2. count inliers p
for threshold 7

Ip=Lll =T

3. repeat N times
and select model
with most inliers



RANSAC (for line fitting example)

# of inliers = 93

150

1. randomly sample
two points from the set,
get a line

100 |+

50 | e e
2. count inliers p

for threshold 7

4
X lp-1I<T

_50 .
. 3. repeat N times
- and select model

—100 1 ¥ 1 . -
. with most inliers

+ data points (w. noise & outliers)
%500 —200 ~100 0 100 200 500 4. Use least squares to fit
X a model (line) to this

g o largest set of inliers
Q: Assume know percentage of outliers in the data.
How many pairs of points (N) should be sampled to have high confidence (e.g. 95%)

that at least one pair are both inliers?  [Fischler and Bolles, 1981]



RANSAC (for line fitting example)

150

line model
100 | | reliably estimated
| | — via RANSAC with
only N=10 samples
(least squares fit to the
largest set of inliers)

50 |-

X/ _
i \
_sol . ’ ] least squares
+ data points (w. noise & outliers) ' line mOd?l
_100|| — least square fit (a=0.05, b=12.5) g? | fit to all points
+ Inlier data Lo
— RANSAC line (a=0.20, b=20.1)
-150 ' -
=300 ~200 =100 0 100 200 300
X . (similar math as in statistical analysist of RANSAC success rate)

Birthday Paradox: in a group of random 23 people the probability
that at least two have same birthday 1s 50.7%



So, how do we find multiple models?

150
100 |
50 |
]
-
1]
=
el
S Or
o
v
>
_50 =
L4
. . . ‘*' .
—100l|* + data points (w. noise & outliers) %"
+ Inlier data Y
— RANSAC line 1 (a=0.10, b=-10.0)
-150 ' ' , ' —
—-300 —200 -100 0 100 200 300

Why not x - coordinate
RANSAC

again?



So, how do we find multiple models?

150
100 |
50 |
_50 -
+ data points (w. noise & outliers) .
+ Inlier data " .
_100l| — RANSAC line 1 (a=0.10, b=-10.0) %)
+ Inlier data Y
—— RANSAC line 2 (a=0.20, b=20.1)
~13956 —200 ~100 0 100 200 300
Why nOt x - coordinate . i .
RAN S A C remove inliers for line 1
and use RANSAC again

again? (sequential RANSAC)



Homography from N = 4 points

Consider N point correspondences p,=(x,y,) — p'=(&'" ")

p'.=Hp. = A-h=0 (*)

2Nx9 9xl 2Nx]
fori=1,....N over-constrained system

Approach I: add constraint i =1. So, there are only 8 unknowns.

Set up a system of linear equations for vector of unknowns h:.s =[a,b,c,d,e,f,g,h]"

A1:8 ‘hy =B= _A9

2Nx8 8x1 2Nx1

solve anHAI gh] s— DB H (least-squares)
1:8

compute inverse for A[4A ., as in line fitting, then hyg = (Ayg” - Avg)' - Avg” - (—Ao)



Homography from N = 4 points

Consider N point correspondences p,=(x,y,) — p'=(&'" ")

p'.=Hp. = A-h=0 (*)

2Nx9 9xl 2Nx]
fori=1,....N over-constrained system

Approach 2: add constraint ||h||=1

solve | min ||A-h]|

(homogeneous least-squares)

h:||h||=1
DLT method
Solution: (unit) eigenvector of A’ A (see p.91
corresponding to the smallest eigen-value in Hartley and

(use SVD, see next slide) Zisserman)



Simple motivating example:

Consider 2x2 diagonal matrix }JJ/ =

solve:| muin || W - x|

x:lx][=1

w, 0

_O w,

N mz
u=wx

X A

v

unit circle in R?
lIx|| =1 or xTx=I

Solution:

X:(l,O) if W1< W,
X:(O,l) if W2< Wy

\/Ellipsoid in R°

r-oxl =1 & wW'Wu=1

2 2
Ui Y2 _
2 2
wy ws

<= equivalently, solve min || u ||
ueEllips



General case: use SVD (rough idea)

embed scale rotate . .
T where U and V are matrices with ortho-normal
A e z / ° l l ° L columns and W is diagonal with elements w; >0
MxN MxN NxN NxN

(see “Numerical Recipes in C”, edition 2, Sec. 2.6)

r R

T
WV= . v=WVIx

2x2 2x2

N

N
7

unit circle in R* e
[x[[=1 or x'x=1I

WVT maps unit circle x7-x =1
onto ellipsoid v W-2v=1

can interpret multiplication by /'
check that x=V; is mapped to point

as change of ortho-normal basis WVTx=we,
(or as space rotation, but illustration should be modified) T
interpret multiplication by

vector with zeros
and 1 in the i-th position

as anisotropic scaling/deformation



General case: use SVD (rough idea)

embed scale rotate . .
T where U and V are matrices with ortho-normal
A e I / ° l l ° L columns and W is diagonal with elements w; >0
MxN MxN NxN NxN

(see “Numerical Recipes in C”, edition 2, Sec. 2.6)

A R

4 ellipsoid from the previous slide
° x embedded on a hyperplane in R

v

v

unit circle in R?
lIx|| =1 or xTx=I A maps unit circle x7-x=1
onto ellipsoid u”-(W?)-u=1

in the range of 4 (2D subspace of R°)

?

How does SVD help to solve min ||A- x|

x| |x[|=1

vector x=V. corresponding to

T
AV, =UWV" -V, =UW -¢, :Wf(U'ei):Wi'Ui — ||AV1 = Wi theleastwi_solvestheproblem

1

Check that V; and (w;)? are eigen vectors/values for matrix 474 (note: ellipsoid x’-(A47A4)-x=1 maps onto circle u’-u=1)

A4V, =VvWVT YV, =VW? e, =w -V, => can use eigen decomposition of 474 instead of SVD of A.

1



Least squares fail
In presence of outliers

400 500 600



Least squares work
If using “inliers” only

imR projected from inliers only

0 imL in Reference frame (LtoRef) 0
50 | 50
100 100
150 [ 150
200 200
250 250

0 100 200 300 400 500 600



Least squares work
If using “inliers” only

larger errors

in the area
after N : ' with no matches
Blendingle—
rors”’

observable in the i
W azx + by HE

“algebraic errors”

T dce gz + hy B
we minimized |
ar +by +c— qgee’—hyz iz ~0 ,_dx—|—2y—|—f -
dr +ey+ f— gy —hyy =iy’ =~ 0 9T + hy +1 7

|
(harder to minimize)

“errors” / ) C ..
.. H D — H D H Did we actually minimize these errors?
among inliers




Least squares work
if using “inliers™ only

\after
blending

Question: how to remove outliers automatically?



RANSAC for robust homography fitting

Only two differences: 1. need to randomly sample four pairs ( p, p')

the minimum number of matches to estimate a homography H

2. pair (p, p') counts as an inlier for a given homography H if

|p'—Hp| T



RANSAC for robust homography fitting

Homography for corrupted four matches is likely to have only a few inliers ( p, p')

/ |p'—Hp|| < T

(randomly sampled)



RANSAC for robust homography fitting

Homography for good four matches has 21 inliers (p, p’)

/ |p'—Hp| T

(randomly sampled)



RANSAC for robust homography fitting

Inliers for the randomly sampled homography with the largest inlier set

imL in Reference frame (LtoRef) imR projected from RANSAC inliers

50
100
150
200
250

0 100 200 300 400 500 600



RANSAC for robust homography fitting

matched
inliers

| p’- Hp ||

The final automatic panrama result



RANSAC for robust model fitting

In general (for other models):

always sample the smallest number
of points/matches needed to estimate a model
RANSAC |oop:/

1. Select four feature pairs (at random)
Compute homography H (exact)
Count inliers (p,p’) where || p'—Hp|| < T

e.g. geometric errors

Iterate N times (steps 1-3). Keep the largest set of inliers.

a &~ 0N

Re-compute least-squares H estimate on all of the inliers

e.g. for algebraic errors
(for simplicity)




Other examples of
_geometric model fitting

images from different view points (optical centers)

i 3 R Ll &
& A ik )| & b A qf‘
; 3 ¢ & : A
> \;ﬁl‘f e
N ~,
S

Merton College III data

from Oxford’s Visual Geometry Group
http://www.robots.ox.ac.uk/~vgg/data/data-mview.html

Question: Is it possible to create a panorama from these images?
(or, 1s there a homography that can match overlap in these images?)

Can a homography map/warp a part of the left image onto a part of the right image?



Other examples of
_geometric model fitting

images from different view points (optical centers)

Merton College III data

from Oxford’s Visual Geometry Group
http://www.robots.ox.ac.uk/~vgg/data/data-mview.html

There should be a homography for each plane in the scene (Why?)

Question: How can we detect such homographies?

What do these multiple homographies give us?



Other examples of
_geometric model fitting

matched features (p,p’), as earlier

NOTE:
9= good matches can be used
: for reconstructing 3D points
if camera positions &
orientations are known:

B (0.p') - X, R

(Triangulation, see next topic)

3. Inliers allow to segment

1. Allow to remove 771 .
| planar regions

. e 3 e
bad matches (outliers) FESEEEE. L

B4 | 4. Segmentation allows to
| extend correspondence
from inliers to any point p
inside segment: (p, Hp)

2. Correspondences
can be estimated with
subpixel precision

(».p") - (p.Hp) 5. Piece-wise planar

3D scene reconstruction

Isack, et al. IJCV12

What do these multiple homographies give us?



So, how do we find multiple models?

150

100

50 f

y - coordinate

—50}

:
"0
-100 | %,
‘.

+ data points (w. noise & outliers) o .

-150 ' ' ‘ ' :
=300 —200 -100 0 100 200

Why not x - coordinate
RANSAC

again?



Fitting other geometric models
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Model fitting for arbitrary geometric models &

Need:

1) define an error measure w.r.t. model parameters || p — & ||

2) efficient method for minimizing the sum of errors

among inliers w.r.t. model parameters 6

min > || p-0|

DPESy



Fitting multiple homographies (e.g. planes)

matched features (p,p’), as

oo S oo —

earlier

T 2
G

using
symmetric

| p'—Hpll+||p—H 'p'|

as an error measure
between match (p, p°)
and homography H

[Isack, et al. IJCV12]



Fitting multiple homographies (e.g. planes)

2 ——
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iple homographies (e.g. planes)

Fitting mult




same scene from a different view point...

Note verv small steps betweeneach floor



Geometric model fitting in vision

MODELS: lines, planes, homographies, affine transformations,

next topic
- single models (e.g. panorama stitching,
- multiple models (e.g. multi-plane reconstruction,

FIRST STEP: detect some features (corners, LOGS, etc)
and compute their descriptors (SIFT, MOPS, etc.)

SECOND STEP: match or track

THIRD STEP: fit models
(minimization or errors/losses)



