
Geometric Model Fitting

with slides stolen from
Yuri Boykov, Steve Seitz and Rick Szeliski



Geometric Model Fitting

• Feature matching   

• Model fitting (e.g. homography estimation for panoramas) 
• How many points to choose?
• Least square model fitting
• RANSAC (robust method for model fitting)

• Multi-model fitting problems
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Flashbacks: feature detectors

Harris corners Dog

from skimage.feature import blob_dog

blobs = blob_dog(image_gray)

from skimage.feature import corner_harris, corner_subpix, corner_peaks

hc_filter = corner_harris(image_gray)
peaks = corner_peaks(hc_filter)

python code from “FeaturePoints.ipynb”



Flashbacks: feature descriptors
We know how to detect points
Next question: How to match them?

?
need point descriptors that should be
• Invariant       (e.g. to gain/bias, rotation, projection, etc)
• Distinctive    (to avoid false matches)



Flashbacks: MOPS descriptor
8x8 oriented patch

• Sampled at 5 x scale
Bias/gain normalization:  I’ = (I – µ)/s

8 pixels40 pixels

Another popular idea (SIFT): use gradient orientations inside the patch
as a descriptor (also invariant to gain/bias)



Flashbacks: MOPS descriptor
8x8 oriented patch

• Sampled at 5 x scale
Bias/gain normalization:  I’ = (I – µ)/s

8 pixels40 pixels

Popular descriptors: MOPS, SIFT, SURF, HOG, BRIEF, many more… 



Feature matching

?

detected features

their descriptors



Feature matching

Optimal matching:
• Bipartite matching, quadratic assignment (QA) problems   

– too expensive

Common simple approach: 

• use SSD (sum of squared differences) between two descriptors (patches).

• for each feature in image 1 find a feature in image 2 with the lowest SSD 

• accept a match if      SSD(patch1,patch2) < T (threshold)



Feature matching

SSD(patch1,patch2) < T            

How to set threshold T?

SSD of the closest match

pr
ob

ab
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ty no threshold T is 
good for separating

correct and 
incorrect matches



Feature matching
A better way [Lowe, 1999]:

• SSD of the closest match (SSD1)
• SSD of the second-closest match (SSD2)
• Accept the best match if it is much better than the second-best match  

(and the rest of the matches)

(SSD1) / (SSD2)

easier to select
threshold T for

decision test
(SSD1) / (SSD2)  < T



Python example (BRIEF descriptor)

from skimage.feature import (corner_harris, corner_peaks, plot_matches, BRIEF, match_descriptors)

keypointsL = corner_peaks(corner_harris(imL), threshold_rel=0.0005, min_distance=5)
keypointsR = corner_peaks(corner_harris(imR), threshold_rel=0.0005, min_distance=5)

extractor = BRIEF()

extractor.extract(imL, keypointsL)
keypointsL = keypointsL[extractor.mask]         
descriptorsL = extractor.descriptors

extractor.extract(imR, keypointsR)
keypointsR = keypointsR[extractor.mask]
descriptorsR = extractor.descriptors

matchesLR = match_descriptors(descriptorsL, descriptorsR, cross_check=True)

find the closest match p’
for any feature p

crosscheck: keep pair  (p,p’)
only if p is the best match for p’



How to fit a homorgaphy???

What problems do you see for homography estimation?



How to fit a homorgaphy???

Issue 1: the number of matches                  is more than 4 )',( ii pp

)',( ii ppIssue 2: too many outliers or wrong matches

What problems do you see for homography estimation?

Answer: model fitting via “least squares”  (later, slide 21)

Answer: robust model fitting via RANSAC (later, slide 35)



Recall: Homography from 4 points

p
p’



Recall: Homography from 4 points
Consider one match (point-correspondence)

Þ 0''' =---++ ixhyxgxxcbyax
0''' =---++ iyhyygxyfeydx

Two equations linear w.r.t unknown coefficients of matrix H 
and quadratic w.r.t. known point coordinates (x,y,x’,y’)
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After eliminating w = gx+hy+i :



Recall: Homography from 4 points
Consider 4 point-correspondences

Þ
0''' =---++ iiiiiii ixxhyxgxcbyax
0''' =---++ iiiiiii iyyhyygxfeydx
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Can be written as matrix multiplication                                    for i=1,2,3,4

where                                                           is a vector of unknown coefficients in H

and             is a 2x9 matrix based on known point coordinates

0hA =×i
T]ihgfedcba[=h

iA iiii yxyx ',',,

for i=1,2,3,4

Special case of 
DLT method

(see p.89
in Hartley and 

Zisserman)



Recall: Homography from 4 points
Consider 4 point-correspondences

Þ

All four matrix equations can be “stacked up” as

or

)''(')( ,, iiiiii yxpyxp =®=

ii Hpp =' 0hA =×i

0hA =×

for i=1,2,3,4
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Q: how many solutions for h?    A: none B: one C:  many



Recall: Homography from 4 points
Consider 4 point-correspondences

Þ

)''(')( ,, iiiiii yxpyxp =®=

ii Hpp =' 0hA =×
for i=1,2,3,4

8x18x9 9x1

8 linear equations, 9 unknowns:    trivial solution h=0?

(*)

To find one specific solution h, for now fix one element, e.g. i = 1

Þ
98:18:1 AhA -=×

8x18x8 8x1

first 8 columns of A first 8 rows of h 9th columns of A

All solutions h form the (right) null space of A of dimension 1,
but they represent the same transformation (as homographies can be scaled) 

as discussed in topic 7, 

this may not work
more generally, should
fix norm  ||h||=1  (later)



Recall: Homography from 4 points
Consider 4 point correspondences )''(')( ,, iiiiii yxpyxp =®=

ii Hpp ='
for i=1,2,3,4

Þ
98:18:1 AhA -=×

8x18x8 8x1



More than 4 points
Consider 4 point correspondences )''(')( ,, iiiiii yxpyxp =®=

Questions: 

What if 4 points correspondences are known with error?

Are there any benefits from knowing more point correspondences?

ii Hpp ='
for i=1,2,3,4

First, consider a simpler model fitting problem…

Þ
98:18:1 AhA -=×

8x18x8 8x1



Simpler example: line fitting
Assume a set of data points            ,            ,            , ...  

(e.g. person’s height vs. weight)

We want to fit a model (e.g. a line) to predict      from      

How many pairs               do we need to find  a and  b?
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Simpler example: line fitting    
Assume a set of data points            ,            ,            , ...  

(e.g. person’s height vs. weight)

We want to fit a model (e.g. a line) to predict      from      

What if the data points             are noisy?
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BxA =×

this problem is also known as 
“linear regression” problem

X

'X
'XbXa =+×

BAx ×= -1
TUWVA ××º -- 11where                                                      is a  pseudo-inverse 

based on SVD decomposition                                         
(in python, one can use svd function in library numpy.linalg)

TVWUA ××=

(least-squares)

)X,X( '
11 )X,X( '

22 )X,X( '
33

sum of squared 
vertical errors in this example



range of transformation A 
(2D subspace of      )3Â

SVD: rough idea
TVWUA ××=

M ≥ N:            MxN MxN NxN NxN

xA ×
3x2

2Â

x

3Â

Ax

projection of  B onto range of  A

U1

U2

Ui (column-vectors of U) form 
the basis of this subspace

2min BAx
x

-

B

How does  SVD  help to solve least-squares ?

BUWV T1 ×××º -BAx ×= -1

embed          scale           rotate
where  U and V are matrices with ortho-normal 
columns and W is diagonal with elements wi ≥0

(see “Numerical Recipes in C”, edition 2, Sec. 2.6)

Equivalent (fast to compute) expression 
x  =  (ATA)-1·AT·B

Nx1                NxN NxM Mx1

Indeed:  ATA = VWUTUWVT = VW2VT

so  (ATA)-1·AT  =  VW-2VT · VWUT = VW-1UT

If  M>>N  computing inverse of positive 
semi-definite NxN matrix ATA can be 

faster than SVD of MxN matrix A

Q: where are the points from R2 mapped to?
A:  point B:   line C: plane    D: whole R3



Least squares line fitting
Data generated as                                         for  a=0.2, b= 20  and  Normal noiseiii XbXaX d++=¢ iXd

iX ¢

iX



Least squares fail 
in presence of outliers

For cases with outliers we need a more robust method
(e.g. RANSAC, coming soon)

+ outliers
iX ¢

iX

Data generated as                                         for  a=0.2, b= 20  and  Normal noiseiii XbXaX d++=¢ iXd



Model fitting robust to outliers

We need a method that can separate inliers from outlliers

RANSAC
random sampling

consensus
[Fischler and Bolles, 1981]



RANSAC (for line fitting example)

1. randomly sample
two points from the set, 

get a line

iX ¢

iX

l



RANSAC (for line fitting example)

2. count inliers p
for threshold T

2T

Tlp £- ||||

# of inliers = 68

iX ¢

iX

1. randomly sample
two points from the set, 

get a line



RANSAC (for line fitting example)

2. count inliers p
for threshold T

2T Tlp £- ||||

l

# of inliers = 24

iX ¢

iX

1. randomly sample
two points from the set, 

get a line

3.  repeat



RANSAC (for line fitting example)

2. count inliers p
for threshold T

2T
Tlp £- ||||

l

# of inliers = 93

iX ¢

iX

1. randomly sample
two points from the set, 

get a line

3.  repeat N times 
and select model 
with most inliers



RANSAC (for line fitting example)

2. count inliers p
for threshold T

Tlp £- ||||

l

# of inliers = 93

3.  repeat N times 
and select model 
with most inliers

4. Use least squares to fit 
a model (line) to this 
largest set of inliers

iX ¢

iX

1. randomly sample
two points from the set, 

get a line

Q:  Assume know percentage of outliers in the data. 
How many pairs of points (N) should be sampled to have high confidence (e.g. 95%)
that at least one pair are both inliers? [Fischler and Bolles, 1981]



RANSAC (for line fitting example)

line model 
reliably estimated 
via  RANSAC with 
only N=10 samples

(least squares fit to the 
largest set of inliers)

least squares 
line model 

fit to all points

iX ¢

iX
Poll:  did you have students in your class (in school) 

who have birthday on same day?      A: yes       B: no  

(similar math as in statistical analysist of RANSAC success rate) 

Birthday Paradox:  in a group of random 23 people the probability
that at least two have same birthday is 50.7%



Why not 
RANSAC

again?

So, how do we find multiple models?



Why not 
RANSAC

again?

remove inliers for line 1
and use RANSAC again
(sequential RANSAC)

So, how do we find multiple models?



Homography from N ≥ 4 points

Approach 1:  add constraint i =1.  So, there are only 8 unknowns.
Set up a system of linear equations for vector of unknowns  h1:8 =[a,b,c,d,e,f,g,h]T

solve  (least-squares)
2

8:18:1h
BhAmin

8:1

-

Consider N point correspondences

Þ

)''(')( ,, iiiiii yxpyxp =®=

ii Hpp =' 0hA =×
for i =1,…,N

2Nx12Nx9 9x1

(*)

98:18:1 ABhA -==×

over-constrained system

2Nx8 8x1 2Nx1

𝒉𝟏:𝟖 = (𝐀𝟏:𝟖$ ⋅ 𝐀𝟏:𝟖)%& ⋅ 𝐀𝟏:𝟖$ ⋅ (−𝐀')8:18:1 AATcompute inverse for              as in line fitting, then



Homography from N ≥ 4 points

Approach 2: add constraint  ||h||=1

||||min
1||h:||h

hA ×
=

DLT  method
(see p.91

in Hartley and 
Zisserman)

Solution:    (unit) eigenvector of      
corresponding to the smallest eigen-value  

(use SVD, see next slide)

AAT

solve 

Consider N point correspondences

Þ

)''(')( ,, iiiiii yxpyxp =®=

ii Hpp =' 0hA =×
for i =1,…,N

2Nx12Nx9 9x1

(*)

over-constrained system

(homogeneous least-squares)



Simple motivating example:

||||min
1||:||

xW
xx

×
=

Consider 2x2 diagonal matrix   

solve:
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W

2Â

x

unit circle in  
||x|| =1   or   xT·x=1

2Â

xW ×
2x2

2Â

u=Wx

Ellipsoid in  2Â

w2
w1

equivalently, solve ||||min u
EllipsuÎ

Solution:    x = (1,0)  if  w1< w2
x = (0,1)  if  w2< w1

Ü



General case: use SVD (rough idea)

where  U and V are matrices with ortho-normal 
columns and W is diagonal with elements wi ≥0

(see “Numerical Recipes in C”, edition 2, Sec. 2.6)

TVWUA ××=
M ≥ N:            MxN MxN NxN NxN

unit circle in  
||x|| =1   or   xT·x=1

2Â

embed          scale           rotate

v = WVTx

WVT maps unit circle  xT·x = 1
onto ellipsoid   vT W -2 v = 1

in basis {V1 , V2 }

w2

w1

V2

V1

2Â

2x2 2x2

check that  x=Vi is mapped to point  
W VT x = wi ei

vector with zeros
and 1 in the i-th position 

• can interpret multiplication by VT
as change of ortho-normal basis

• interpret multiplication by W
as anisotropic scaling/deformation  

(or as space rotation, but illustration should be modified)

2Â

x



General case: use SVD (rough idea)

where  U and V are matrices with ortho-normal 
columns and W is diagonal with elements wi ≥0

(see “Numerical Recipes in C”, edition 2, Sec. 2.6)

TVWUA ××=
M ≥ N:            MxN MxN NxN NxN

xA ×
3x2

2Â

x

3Â

Ax

How does  SVD  help to solve                            ?||x||min
1||x:||x

×
=
A

A maps unit circle  xT·x=1
onto ellipsoid   uT·(W2)-1·u=1 

in the range of  A (2D subspace of      ) 
Indeed, the coordinates of vector  u are in 

basis {U1 ,U2 },  i.e.  u=WVT ·x and  x=VW-1 ·u

3Â

unit circle in  
||x|| =1   or   xT·x=1

2Â

w
2

w1

iiiiii
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i Uw)eU(weUWVUWVVA ×=××=×=×=×

embed          scale           rotate

U2

U1

i
2
ii

2
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T2
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T VweVWVVVWVAA ×=×=×=×

Check that Vi and (wi)2 are eigen vectors/values for matrix  ATA   (note: ellipsoid xT·(ATA)·x=1 maps onto circle uT·u=1 ) 

ii w||VA|| =×Þ vector x=Vi corresponding to 
the least wi solves the problem

can use eigen decomposition of ATA instead of SVD of A. => 

ellipsoid from the previous slide
embedded on a hyperplane in 3Â



Least squares fail 
in presence of outliers



Least squares work 
if using “inliers” only     ( detecting these? – soon )

imR projected from inliers only



larger errors 
in the area

with no matchesafter
blending

Did we actually minimize these errors?

“geometric errors”
observable in the image

(harder to minimize)

“algebraic errors”
we minimized

“errors” 
among inliers

Least squares work 
if using “inliers” only     ( detecting these? – soon )



Question: how to remove outliers automatically?

after
blending

Least squares work 
if using “inliers” only     ( detecting these? – soon )



RANSAC for robust homography fitting

only two differences:    1. need to randomly sample four pairs 

the minimum number of matches to estimate a homography H

),( pp ¢

2.  pair                  counts as an inlier for a given homography H if 

THpp £-¢ ||||

),( pp ¢



RANSAC for robust homography fitting

Homography for corrupted four matches is likely to have only a few inliers

THpp £-¢ ||||

),( pp ¢

(randomly sampled)



RANSAC for robust homography fitting

Homography for good four matches has 21 inliers

THpp £-¢ ||||

),( pp ¢

(randomly sampled)



RANSAC for robust homography fitting

Inliers for the randomly sampled homography with the largest inlier set



RANSAC for robust homography fitting

The final automatic panorama result

|| p’ - Hp ||

matched
inliers



RANSAC loop:
1. Select four feature pairs (at random)
2. Compute homography H (exact)
3. Count inliers where

4. Iterate N times (steps 1-3). Keep the largest set of inliers.
5. Re-compute least-squares H estimate on all of the inliers

THpp £-¢ ||||),( pp ¢

RANSAC for robust model fitting
In general (for other models):
always sample the smallest number 
of points/matches needed to estimate a model

e.g. geometric errors

e.g. for algebraic errors
(for simplicity)



Other examples of 
geometric model fitting

Merton College III data 
from Oxford’s Visual Geometry Group 

http://www.robots.ox.ac.uk/~vgg/data/data-mview.html

Question: Is it possible to create a panorama from these images?
(or, is there a homography that can match overlap in these images?)

images from different view points (optical centers)

Can a homography map/warp a part of the left image onto a part of the right image?



Merton College III data 
from Oxford’s Visual Geometry Group 

http://www.robots.ox.ac.uk/~vgg/data/data-mview.html

images from different view points (optical centers)

Other examples of 
geometric model fitting

There should be a homography for each plane in the scene  (Why?)

Question:  How can we detect such homographies? 

What do these multiple homographies give us?



matched features (p,p’), as earlier

[Isack, et al. IJCV12]

What do these multiple homographies give us?

3. Inliers allow to segment 
planar regions

4. Segmentation allows to 
extend correspondence 
from inliers to any point  p 
inside segment: 

1. Allow to remove 
bad matches (outliers)

2. Correspondences 
can be estimated with 

subpixel precision
𝒑, 𝒑( → (𝒑,𝑯𝒑)

(𝒑,𝑯𝒑)

NOTE: 
good matches can be used 

for reconstructing 3D points
if camera positions & 

orientations are known:

(Triangulation, see next topic)

𝒑, 𝒑( → 𝑿𝒑∈ 𝑹𝟑

Other examples of 
geometric model fitting

5. Piece-wise planar         
3D scene reconstruction



So, how do we find multiple models?

Why not 
RANSAC

again?



Fitting other geometric models

Model fitting for arbitrary geometric models  θ

Need: 1) define an error measure w.r.t. model parameters |||| q-p

2) efficient method for minimizing the sum of errors 
among inliers w.r.t. model parameters θ å

Î

-
q

q
q Sp

p ||||min

( )2222 )()(:|||| rcycxp ypxp ----=-q },,{ rcc yc=qfor



Fitting multiple homographies (e.g. planes)

matched features (p,p’), as earlier

[Isack, et al. IJCV12]

|||||||| 1pHpHpp ¢-+-¢ -

using
symmetric

re-projection errors

as an error measure 
between match (p, p’) 
and homography H



Fitting multiple homographies (e.g. planes)



Fitting multiple homographies (e.g. planes)



same scene from a different view point…

Note very small steps between each floor



next topic

Geometric model fitting in vision

- single models (e.g. panorama stitching, camera projection matrix)
- multiple models (e.g. multi-plane reconstruction, multiple rigid motion)

FIRST STEP:  detect some features (corners, LOGS, etc) 
and compute their descriptors (SIFT, MOPS, etc.)

SECOND STEP:   match or track

THIRD STEP:      fit models
(minimization or errors/losses)

MODELS: lines, planes, homographies, affine transformations, 
projection matrices, fundamental/essential matrices, etc.


