Geometric Model Fitting

with slides stolen from
Yuri Boykov, Steve Seitz and Rick Szeliski

Geometric Model Fitting

- Feature matching $\left(\mathbf{p}_{i}, \mathbf{p}_{i}^{\prime}\right)$
- Model fitting (e.g. homography estimation for panoramas)
- How many points to choose?
- Least square model fitting
- RANSAC (robust method for model fitting)
- Multi-model fitting problems

Flashbacks: feature detectors

Harris corners

Dog
python code from "FeaturePoints.ipynb"
from skimage.feature import corner_harris, corner_subpix, corner_peaks
hc_filter = corner_harris(image_gray)
peaks = corner_peaks(hc_filter)
from skimage.feature import blob_dog
blobs = blob_dog(image_gray)

Flashbacks: feature descriptors

We know how to detect points
 Next question: How to match them?

need point descriptors that should be

- Invariant (e.g. to gain/bias, rotation, projection, etc)
- Distinctive (to avoid false matches)

Flashbacks: MOPS descriptor

8×8 oriented patch

- Sampled at $5 \times$ scale

Bias/gain normalization: l' $=(I-\mu) / \sigma$

Another popular idea (SIFT): use gradient orientations inside the patch as a descriptor (also invariant to gain/bias)

Flashbacks: MOPS descriptor

8×8 oriented patch

- Sampled at $5 \times$ scale

Bias/gain normalization: l' $=(I-\mu) / \sigma$

Popular descriptors: MOPS, SIFT, SURF, HOG, BRIEF, many more...

Feature matching

Feature matching

Optimal matching:

- Bipartite matching, quadratic assignment (QA) problems
- too expensive

Common simple approach:

- use SSD (sum of squared differences) between two descriptors (patches).
- for each feature in image 1 find a feature in image 2 with the lowest SSD
- accept a match if SSD (patch1, patch2) $<T$ (threshold)

Feature matching

SSD(patch1, patch2) < T

How to set threshold T?

> no threshold T is good for separating correct and incorrect matches

Feature matching

A better way [Lowe, 1999]:

- SSD of the closest match (SSD1)
- SSD of the second-closest match (SSD2)
- Accept the best match if it is much better than the second-best match (and the rest of the matches)

easier to select threshold T for decision test (SSD1) / (SSD2) < T

Python example (BRIEF descriptor)

from skimage.feature import (corner_harris, corner_peaks, plot_matches, BRIEF, match_descriptors)
keypointsL $=$ corner_peaks(corner_harris (imL), threshold_rel $=0.0005$, min_distance $=5$)
keypointsR $=$ corner_peaks $($ corner_harris $(i m R)$, threshold_rel $=0.0005$, min_distance $=5$)
extractor $=$ BRIEF()
extractor.extract(imL, keypointsL)
keypointsL = keypointsL[extractor.mask]
descriptorsL $=$ extractor.descriptors
extractor.extract(imR, keypointsR)
keypointsR = keypointsR[extractor.mask]
find the closest match p, for any feature p
descriptorsR $=$ extractor.descriptors

How to fit a homorgaphy???

What problems do you see for homography estimation?

How to fit a homorgaphy???

What problems do you see for homography estimation?
Issue 1: the number of matches $\left(\mathbf{p}_{i}, \mathbf{p}_{i}^{\prime}\right)$ is more than 4 Answer: model fitting via "least squares" (later, slide 21)

Issue 2: too many outliers or wrong matches $\left(\mathbf{p}_{i}, \mathbf{p}_{i}^{\prime}\right)$
Answer: robust model fitting via RANSAC (later, slide 35)

Recall: Homography from 4 points

Recall: Homography from 4 points

Consider one match (point-correspondence) $p=(x, y) \rightarrow p^{\prime}=\left(x^{\prime}, y^{\prime}\right)$

$$
\mathbf{p}^{\prime}=\mathbf{H p} \quad\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
$$

After eliminating $w=g x+h y+i$:

$$
\Rightarrow \quad \begin{aligned}
& a x+b y+c-g x x^{\prime}-h y x^{\prime}-i x^{\prime}=0 \\
& d x+e y+f-g x y^{\prime}-h y y^{\prime}-i y^{\prime}=0
\end{aligned}
$$

Two equations linear w.r.t unknown coefficients of matrix H and quadratic w.r.t. known point coordinates ($x, y, x^{\prime}, y^{\prime}$)

Recall: Homography from 4 points

Consider 4 point-correspondences $p_{i}=\left(x_{i}, y_{i}\right) \rightarrow p_{i}^{\prime}=\left(x_{i}^{\prime}, y_{i}^{\prime}\right)$

$$
\left.\left.\left.\begin{array}{r}
\mathbf{p}_{i}^{\prime}=\mathbf{H p}_{i} \\
w_{i} y_{i}^{\prime} \\
w_{i}
\end{array}\right]=\left[\begin{array}{ccc}
w_{i} x_{i}^{\prime} \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{ccc}
a & b & c \\
y_{i} \\
1
\end{array}\right] \quad \begin{array}{c}
x_{i} \\
\text { for i=1,2,3,4 }
\end{array}\right] \begin{array}{c}
\text { Special case of } \\
\text { DLT method } \\
\text { (see p.89 } \\
\text { in Hartley and } \\
\text { Zisserman) }
\end{array}\right]
$$

Can be written as matrix multiplication $\quad \mathbf{A}_{i} \cdot \mathbf{h}=\mathbf{0} \quad$ for $\mathbf{i}=\mathbf{1 , 2 , 3 , 4}$
where $\mathbf{h}=[a b c d e f g h i]^{T}$ is a vector of unknown coefficients in \mathbf{H} and \mathbf{A}_{i} is a 2×9 matrix based on known point coordinates $x_{i}, y_{i}, x_{i}^{\prime}, y_{i}^{\prime}$

Recall: Homography from 4 points

Consider 4 point-correspondences $p_{i}=\left(x_{i} y_{i}\right) \rightarrow p_{i}^{\prime}=\left(x_{i}^{\prime}, y_{i}^{\prime}\right)$

$$
\mathbf{p}_{i}^{\prime}=\mathbf{H} \mathbf{p}_{i} \quad \Rightarrow \quad \underset{2 \times 99 \times 1 \quad 2 \times 1}{\mathbf{A}_{i} \cdot \mathbf{h}=\mathbf{0}} \quad \text { for } \mathrm{i}=1,2,3,4
$$

Recall: Homography from 4 points

Consider 4 point-correspondences $p_{i}=\left(x_{i} y_{i}\right) \rightarrow p_{i}^{\prime}=\left(x_{i}^{\prime}, y_{i}^{\prime}\right)$

$$
\begin{aligned}
& \mathbf{p}_{i}^{\prime}=\mathbf{H} \mathbf{p}_{i} \\
& \text { for } \mathrm{i}=1,2,3,4
\end{aligned}
$$

8 linear equations, 9 unknowns: trivial solution $h=0$? All solutions h form the (right) null space of A of dimension 1, but they represent the same transformation (as homographies can be scaled)
as discussed in topic 7,
To find one specific solution h, for now fix one element, e.g. $i=1$ this may not work more generally, should

Recall: Homography from 4 points

Consider 4 point correspondences $p_{i}=\left(x_{i} y_{i}\right) \rightarrow p_{i}^{\prime}=\left(x_{i,}^{\prime}, y_{i}^{\prime}\right)$

$$
\begin{aligned}
& \mathbf{p}_{i}^{\prime}=\mathbf{H} \mathbf{p}_{i} \\
& \text { for } i=1,2,3,4
\end{aligned} \quad \Rightarrow \quad{\underset{8 \times 8}{\mathbf{A}_{1: 8}} \cdot \mathbf{h}_{1: 8}=-\mathbf{A}_{9 \times 1}}_{8 \times 1}
$$

More than 4 points

Consider 4 point correspondences $p_{i}=\left(x_{i}, y_{i}\right) \rightarrow p_{i}^{\prime}=\left(x_{i,}^{\prime} y_{i}^{\prime}\right)$

$$
\begin{gathered}
\mathbf{p}_{i}^{\prime}=\mathbf{H} \mathbf{p}_{i} \\
\text { for } \mathrm{i}=1,2,3,4
\end{gathered} \quad \Rightarrow \quad \begin{array}{|c}
\mathbf{A}_{1: 8} \cdot \mathbf{h}_{1: 8} \\
8 \times 8
\end{array}=-\mathbf{A}_{9}
$$

Questions:

What if 4 points correspondences are known with error?

Are there any benefits from knowing more point correspondences?

First, consider a simpler model fitting problem...

Simpler example: line fitting

Assume a set of data points $\left(X_{1}, X_{1}^{\prime}\right),\left(X_{2}, X_{2}^{\prime}\right),\left(X_{3}, X_{3}^{\prime}\right), \ldots$
(e.g. person's height vs. weight)

We want to fit a model (e.g. a line) to predict X^{\prime} from X

$$
a \cdot X+b=X^{\prime}
$$

How many pairs (X_{i}, X_{i}^{\prime}) do we need to find a and b ?

$$
\begin{gathered}
X_{1} a+b=X_{1}^{\prime} \\
X_{2} a+b=X_{2}^{\prime} \\
{\left[\begin{array}{ll}
X_{1} & 1 \\
X_{2} & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
X_{1}^{\prime} \\
X_{2}^{\prime}
\end{array}\right]} \\
\boldsymbol{A} \cdot \boldsymbol{x}=\boldsymbol{B}
\end{gathered} \boldsymbol{x}^{\boldsymbol{x}=\boldsymbol{A}^{-1} \cdot \boldsymbol{B}} .
$$

Simpler example: line fitting

Assume a set of data points $\left(X_{1}, X_{1}^{\prime}\right),\left(X_{2}, X_{2}^{\prime}\right),\left(X_{3}, X_{3}^{\prime}\right), \ldots$
(e.g. person's height vs. weight)

We want to fit a model (e.g. a line) to predict X^{\prime} from X

$$
a \cdot X+b=X^{\prime}
$$

What if the data points (X_{i}, X_{i}^{\prime}) are noisy?

$$
\begin{aligned}
& {\left[\begin{array}{cc}
X_{1} & 1 \\
X_{2} & 1 \\
X_{3} & 1 \\
\ldots & \ldots
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
X_{1}^{\prime} \\
X_{2}^{\prime} \\
X_{3}^{\prime} \\
\ldots
\end{array}\right]} \\
& \min _{x}\|A x-B\|^{2} \\
& \boldsymbol{x}=\boldsymbol{A}^{-1} \cdot \boldsymbol{B}
\end{aligned}
$$

$$
\begin{array}{ll}
& \text { this problem is also known as } \\
\chi^{\prime} & \begin{array}{l}
\text { "linear regression" problem }
\end{array}
\end{array}
$$

$$
a \cdot X+b=X^{\prime}
$$

$$
\min _{x}\|A x-B\|^{2} \quad \text { (least-squares) }
$$

$$
\text { where } \quad A^{-1} \equiv V \cdot W^{-1} \cdot U^{T} \quad \text { is a pseudo-inverse }
$$

$$
\begin{aligned}
& \text { where } A \equiv V \cdot W \cdot \text { is a pseudo-inv } \\
& \text { based on SVD decomposition } A=U \cdot W \cdot V^{T}
\end{aligned}
$$

(in python, one can use $s v d$ function in library numpy.linalg)

SVD: rough idea

$$
\underset{\mathrm{M} \geq \mathrm{N}:}{A}=\underbrace{\text { embed }}_{\mathrm{MxN}} \cdot V_{\mathrm{NxN}}^{\text {scale }} \cdot V_{\mathrm{NxN}}^{\text {route }} T
$$

where U and V are matrices with orthonormal columns and W is diagonal with elements $\boldsymbol{w}_{i} \geq 0$ (see "Numerical Recipes in C", edition 2, Sec. 2.6)

 3x2

Q: where are the points from $R^{\mathbf{2}}$ mapped to? A: point B: line C: plane D: whole R^{3}

How does SVD help to solve least-squares?

$$
\min _{x}\|A x-B\|^{2}
$$

projection of B onto range of \boldsymbol{A}

$$
x=A^{-1} \cdot B \equiv V \cdot W^{-1} \cdot U^{T} \cdot B
$$

Equivalent (fast to compute) expression

$$
\left.\underset{\mathrm{Nx} 1}{x}=\underset{\mathrm{NxN}}{\left(A^{T}\right.} \boldsymbol{A}\right)^{-1} \cdot \underset{\mathrm{NxM}}{A^{T}} \cdot \underset{\mathrm{Mx1}}{B}
$$

Indeed: $\left.\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}=V W U^{2} \not\right)^{2} W V^{T}=\boldsymbol{V} \boldsymbol{W}^{2} \boldsymbol{V}^{\boldsymbol{T}}$ so $\left(\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}\right)^{-1} \cdot \boldsymbol{A}^{\boldsymbol{T}}=V W^{-2}, ~ N W U^{T}=\boldsymbol{V} \boldsymbol{W}^{-1} \boldsymbol{U}^{\boldsymbol{T}}$ If $\mathrm{M} \gg \mathrm{N}$ computing inverse of positive semi-definite NuN matrix $A^{T} A$ can be faster than SVD of MuN matrix A

Least squares line fitting

Data generated as $X_{i}^{\prime}=a X_{i}+b+\delta X_{i}$ for $a=0.2, b=20$ and Normal noise δX_{i}

Least squares fail in presence of outliers

Data generated as $X_{i}^{\prime}=a X_{i}+b+\delta X_{i}$ for $a=0.2, b=20$ and Normal noise δX_{i}

For cases with outliers we need a more robust method (e.g. RANSAC, coming soon)

Model fitting robust to outliers

We need a method that can separate inliers from outliers

RANSAC

random sampling
consensus
[Fischler and Bolles, 1981]

RANSAC (for line fitting example)

1. randomly sample two points from the set, get a line

RANSAC (for line fitting example)

1. randomly sample two points from the set, get a line
2. count inliers p for threshold T

$$
\|p-l\| \leq T
$$

RANSAC (for line fitting example)

1. randomly sample two points from the set, get a line
2. count inliers p for threshold T

$$
\|p-l\| \leq T
$$

3. repeat

RANSAC (for line fitting example)

1. randomly sample two points from the set, get a line
2. count inliers p for threshold T

$$
\|p-l\| \leq T
$$

3. repeat \mathbf{N} times and select model with most inliers

RANSAC (for line fitting example)

1. randomly sample two points from the set, get a line
2. count inliers p for threshold T

$$
\|p-l\| \leq T
$$

3. repeat \mathbf{N} times and select model with most inliers
4. Use least squares to fit a model (line) to this largest set of inliers
Q: Assume know percentage of outliers in the data. How many pairs of points (N) should be sampled to have high confidence (e.g. 95\%) that at least one pair are both inliers? [Fischler and Bolles, 1981]

RANSAC (for line fitting example)

$$
\boldsymbol{X}_{i} \quad \text { (similar math as in statistical analysist of RANSAC success rate) }
$$

Birthday Paradox: in a group of random 23 people the probability that at least two have same birthday is 50.7%

So, how do we find multiple models?

So, how do we find multiple models?

Homography from $N \geq 4$ points

Consider N point correspondences $p_{i}=\left(x_{i}, y_{i}\right) \rightarrow p_{i}^{\prime}=\left(x_{i}^{\prime}, y_{i}^{\prime}\right)$

$$
\begin{aligned}
& \mathbf{p}_{i}^{\prime}=\mathbf{H} \mathbf{p}_{i} \\
& \text { for } i=1, \ldots, \mathrm{~N}
\end{aligned}
$$

$$
\underset{2 N \mathrm{~N} \cdot}{\mathbf{A} \cdot \mathbf{h}=\mathbf{0}=\mathbf{0}}
$$

over-constrained system

Approach 1: add constraint $\boldsymbol{i}=\mathbf{1}$. So, there are only 8 unknowns.
Set up a system of linear equations for vector of unknowns $\boldsymbol{h}_{1: 8}=[\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}]^{\mathrm{T}}$

$$
\underset{\substack{2 \times 88}}{\mathbf{A}_{1: 8}} \cdot \underset{8 \mathrm{x}}{\mathbf{h}} \underset{1: 8}{ }=\mathbf{B}=-\underset{2 \mathrm{x} 1}{\mathbf{A}_{9}}
$$

solve

$$
\min _{h_{t s}}\left\|A_{1: 8} h_{1: 8}-B\right\|^{2}
$$

(least-squares)
compute inverse for $\mathbf{A}_{1: 8}^{T} \mathbf{A}_{1: 8}$ as in line fitting, then $\boldsymbol{h}_{\mathbf{1}: \mathbf{8}}=\left(\mathbf{A}_{\mathbf{1}: 8}{ }^{T} \cdot \mathbf{A}_{\mathbf{1}: 8}\right)^{-1} \cdot \mathbf{A}_{\mathbf{1}: 8}{ }^{T} \cdot\left(-\mathbf{A}_{9}\right)$

Homography from $N \geq 4$ points

Consider N point correspondences $p_{i}=\left(x_{i}, y_{i}\right) \rightarrow p_{i}^{\prime}=\left(x_{i}^{\prime}, y_{i}^{\prime}\right)$

$$
\begin{aligned}
& \mathbf{p}_{i}^{\prime}=\mathbf{H} \mathbf{p}_{i} \\
& \text { for } i=1, \ldots, \mathrm{~N}
\end{aligned}
$$

$$
\underbrace{}_{2 N \times 9} \mathbf{A} \cdot \mathbf{h}=\mathbf{0}
$$

over-constrained system

Approach 2: add constraint $\|\mathrm{h}\|=1$

Solution: (unit) eigenvector of $\mathbf{A}^{T} \mathbf{A}$ corresponding to the smallest eigen-value (use SVD, see next slide)

DLT method (see p. 91
in Hartley and
Zisserman)

Simple motivating example:

Consider 2x2 diagonal matrix $\quad W=\left[\begin{array}{cc}w_{1} & 0 \\ 0 & w_{2}\end{array}\right]$

solve: $\min _{x:\|x\|=1}\|W \cdot x\|$

Solution: $\quad x=(1,0)$ if $w_{1}<w_{2}$

$$
x=(0,1) \text { if } w_{2}<w_{1}
$$

\Leftarrow equivalently, solve $\min _{u \in \text { Elips }}\|u\|$

General case: use SVD (rough idea)

where U and V are matrices with ortho-normal columns and W is diagonal with elements $w_{i} \geq 0$ (see "Numerical Recipes in C", edition 2, Sec. 2.6)

General case: use SVD (rough idea)

where U and V are matrices with ortho-normal columns and W is diagonal with elements $w_{i} \geq 0$ (see "Numerical Recipes in C", edition 2, Sec. 2.6)

$\uparrow \mathfrak{R}^{3}$

How does SVD help to solve $\min _{x:||x||=1}\|\mathbf{A} \cdot x\|$?

$$
A \cdot V_{i}=U W V^{T} \cdot V_{i}=U W \cdot e_{i}=w_{i} \cdot\left(U \cdot e_{i}\right)=w_{i} \cdot U_{i} \quad \Rightarrow\left\|A \cdot V_{i}\right\|=w_{i} \begin{aligned}
& \frac{\begin{array}{c}
\text { vector } x=V_{i} \\
\text { the least } w_{i} \\
\text { corresponding to } \\
\text { solves the problem }
\end{array}}{\text { then }} \text {. }
\end{aligned}
$$

Check that V_{i} and $\left(w_{i}\right)^{2}$ are eigen vectors/values for matrix $A^{T} A$ (note: ellipsoid $x^{T} \cdot\left(A^{T} A\right) \cdot x=1$ maps onto circle $u^{T} \cdot u=1$)
$A^{T} A \cdot V_{i}=V W^{2} V^{T} \cdot V_{i}=V W^{2} \cdot e_{i}=w_{i}^{2} \cdot V_{i} \quad \Rightarrow \quad$ can use eigen decomposition of $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}$ instead of SVD of \boldsymbol{A}.

Least squares fail in presence of outliers

Least squares work
if using "inliers" only (detecting these? - soon)

imR projected from inliers only

Least squares work if using "inliers" only (detecting these? - soon)

larger errors in the area with no matches
 we minimized

$a x+b y+c-g x x^{\prime}-h y x^{\prime}-i x^{\prime}$
≈ 0
$d x+e y+f-g x y^{\prime}-h y y^{\prime}-i y^{\prime}$
≈ 0

"geometric errors"
observable in the image

$$
\begin{aligned}
& x^{\prime}-\frac{a x+b y+c}{g x+h y+i} \approx 0 \\
& y^{\prime}-\frac{d x+e y+f}{g x+h y+i} \approx 0
\end{aligned}
$$

(harder to minimize)
"errors"
nong inliers $\left\|p^{\prime}-H p\right\| \quad$ Did we actually minimize these errors?

Least squares work if using "inliers" only (detecting these? - soon)

Question: how to remove outliers automatically?

RANSAC for robust homography fitting

only two differences:

1. need to randomly sample four pairs $\left(p, p^{\prime}\right)$
the minimum number of matches to estimate a homography H
2. pair $\left(p, p^{\prime}\right)$ counts as an inlier for a given homography \mathbf{H} if

$$
\left\|p^{\prime}-H p\right\| \leq T
$$

RANSAC for robust homography fitting

Homography for corrupted four matches is likely to have only a few inliers (p, p^{\prime})

$$
\left\|p^{\prime}-H p\right\| \leq T
$$

(randomly sampled)

RANSAC for robust homography fitting

Homography for good four matches has 21 inliers (p, p^{\prime})

$$
\left\|p^{\prime}-H p\right\| \leq T
$$

(randomly sampled)

RANSAC for robust homography fitting

Inliers for the randomly sampled homography with the largest inlier set
imL in Reference frame (LtoRef)

imR projected from RANSAC inliers

RANSAC for robust homography fitting

matched inliers
$\left\|p^{\prime}-H p\right\|$
The final automatic panorama result

RANSAC for robust model fitting

RANSAC loop:
In general (for other models):
always sample the smallest number
of points/matches needed to estimate a model

1. Select four feature pairs (at random)
2. Compute homography H (exact)
3. Count inliers (p, p^{\prime}) where $\left\|p^{\prime}-H p\right\| \leq T$
e.g. geometric errors
4. Iterate N times (steps $1-3$). Keep the largest set of inliers.
5. Re-compute least-squares H estimate on all of the inliers

Other examples of geometric model fitting

Merton College III data
from Oxford's Visual Geometry Group
http://www.robots.ox.ac.uk/~vgg/data/data-mview.html

Question: Is it possible to create a panorama from these images? (or, is there a homography that can match overlap in these images?)

Can a homography map/warp a part of the left image onto a part of the right image?

Other examples of geometric model fitting

Merton College III data
from Oxford's Visual Geometry Group
http://www.robots.ox.ac.uk/~vgg/data/data-mview.html

There should be a homography for each plane in the scene (Why?)

Question: How can we detect such homographies?

What do these multiple homographies give us?

Other examples of geometric model fitting

1. Allow to remove bad matches (outliers)
2. Correspondences can be estimated with subpixel precision $\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right) \rightarrow(\boldsymbol{p}, \boldsymbol{H} \boldsymbol{p})$
matched features (p, p '), as earlier

NOTE:
good matches can be used for reconstructing 3D points if camera positions \& orientations are known:
$\left(p, p^{\prime}\right) \rightarrow X_{p} \in R^{3}$
(Triangulation, see next topic)
3. Inliers allow to segment planar regions
4. Segmentation allows to extend correspondence from inliers to any point \boldsymbol{p} inside segment: $(\boldsymbol{p}, \boldsymbol{H} \boldsymbol{p})$
5. Piece-wise planar 3D scene reconstruction

So, how do we find multiple models?

Fitting other geometric models

$$
\|p-\theta\|:=\left(\left(x_{p}-c_{x}\right)^{2}-\left(y_{p}-c_{y}\right)^{2}-r^{2}\right)^{2} \quad \text { for } \quad \theta=\left\{c_{c}, c_{y}, r\right\}
$$

Model fitting for arbitrary geometric models $\boldsymbol{\theta}$

Need: 1) define an error measure w.r.t. model parameters $\|p-\theta\|$
2) efficient method for minimizing the sum of errors among inliers w.r.t. model parameters $\boldsymbol{\theta}$

$$
\min _{\theta} \sum_{p \in S_{\theta}}\|p-\theta\|
$$

Fitting multiple homographies (e.g. planes)

Fitting multiple homographies (e.g. planes)

Fitting multiple homographies (e.g. planes)

same scene from a different view point...

Geometric model fitting in vision

MODELS: lines, planes, homographies, affine transformations, projection matrices, fundamental/essential matrices, etc.
next topic

- single models (e.g. panorama stitching, camera projection matrix)
- multiple models (e.g. multi-plane reconstruction, multiple rigid motion)

FIRST STEP: detect some features (corners, LOGS, etc) and compute their descriptors (SIFT, MOPS, etc.)

SECOND STEP: match or track
THIRD STEP: fit models
(minimization or errors/losses)

