Geometric Model Fitting

with slides stolen from Yuri Boykov, Steve Seitz and Rick Szeliski

Geometric Model Fitting

- Feature matching $(\mathbf{p}_i, \mathbf{p}'_i)$
- Model fitting (e.g. homography estimation for panoramas)
 - How many points to choose?
 - Least square model fitting
 - RANSAC (robust method for model fitting)
- Multi-model fitting problems

Flashbacks: feature detectors

Harris corners

python code from "FeaturePoints.ipynb"

from skimage.feature import corner_harris, corner_subpix, corner_peaks

hc_filter = corner_harris(image_gray)
peaks = corner_peaks(hc_filter)

from skimage.feature import blob_dog

blobs = blob_dog(image_gray)

Flashbacks: feature descriptors

We know how to detect points Next question: **How to match them?**

need **point descriptors** that should be

- Invariant (e.g. to gain/bias, rotation, projection, etc)
- Distinctive (to avoid false matches)

Flashbacks: MOPS descriptor

8x8 oriented patch

• Sampled at 5 x scale

Bias/gain normalization: I' = $(I - \mu)/\sigma$

Another popular idea (SIFT): use gradient orientations inside the patch as a descriptor (also invariant to gain/bias)

Flashbacks: MOPS descriptor

8x8 oriented patch

• Sampled at 5 x scale

Bias/gain normalization: I' = $(I - \mu)/\sigma$

Popular descriptors: MOPS, SIFT, SURF, HOG, BRIEF, many more...

?

Optimal matching:

- Bipartite matching, quadratic assignment (QA) problems
 - too expensive

Common simple approach:

- use SSD (sum of squared differences) between two descriptors (patches).
- for each feature in image 1 find a feature in image 2 with the lowest SSD
- accept a match if SSD(patch1,patch2) < T (threshold)

SSD(patch1,patch2) < T

How to set threshold T?

no threshold T is good for separating correct and incorrect matches

A better way [Lowe, 1999]:

- SSD of the closest match (SSD1)
- SSD of the <u>second-closest</u> match (SSD2)
- Accept the best match if it is much better than the second-best match (and the rest of the matches)

easier to select threshold T for decision test (SSD1) / (SSD2) < T

Python example (BRIEF descriptor)

from skimage.feature import (corner_harris, corner_peaks, plot_matches, BRIEF, match_descriptors)

keypointsL = corner_peaks(corner_harris(imL), threshold_rel=0.0005, min_distance=5) keypointsR = corner_peaks(corner_harris(imR), threshold_rel=0.0005, min_distance=5)

extractor = BRIEF()

extractor.extract(imL, keypointsL) keypointsL = keypointsL[extractor.mask] descriptorsL = extractor.descriptors

extractor.extract(imR, keypointsR) keypointsR = keypointsR[extractor.mask] descriptorsR = extractor.descriptors

find the closest match p' for any feature p

crosscheck: keep pair (p,p') only if p is the best match for p'

matchesLR = match_descriptors(descriptorsL, descriptorsR, cross_check=True)

How to fit a homorgaphy???

What problems do you see for homography estimation?

How to fit a homorgaphy???

What problems do you see for homography estimation?

Issue 1: the number of matches (p_i, p'_i) is more than 4
Answer: model fitting via "least squares" (later, slide 21)
Issue 2: too many *outliers* or wrong matches (p_i, p'_i)
Answer: robust model fitting via RANSAC (later, slide 35)

Consider one match (point-correspondence) $p = (x, y) \rightarrow p' = (x', y')$

$$\mathbf{p'} = \mathbf{H}\mathbf{p} \qquad \begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

After eliminating w = gx + hy + i:

$$\Rightarrow ax + by + c - gxx' - hyx' - ix' = 0$$

$$dx + ey + f - gxy' - hyy' - iy' = 0$$

Two equations linear w.r.t unknown coefficients of matrix H and quadratic w.r.t. known point coordinates (x,y,x',y')

Consider 4 point-correspondences $p_i = (x_{i,y_i}) \rightarrow p'_i = (x'_{i,y_i})$

$$\mathbf{p'}_{i} = \mathbf{H}\mathbf{p}_{i} \qquad \begin{bmatrix} w_{i}x'_{i} \\ w_{i}y'_{i} \\ w_{i} \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x_{i} \\ y_{i} \\ 1 \end{bmatrix} \qquad \text{for i=1,2,3,4}$$

 $ax_{i} + by_{i} + c - gx_{i}x'_{i} - hy_{i}x'_{i} - ix'_{i} = 0$ $dx_{i} + ey_{i} + f - gx_{i}y'_{i} - hy_{i}y'_{i} - iy'_{i} = 0$

Can be written as matrix multiplication

 \Rightarrow

 $A_{i} \cdot h = 0$ for i=1,2,3,4

where $\mathbf{h} = [a b c d e f g h i]^T$ is a vector of unknown coefficients in H and \mathbf{A}_i is a 2x9 matrix based on known point coordinates x_i, y_i, x'_i, y'_i

Consider 4 point-correspondences $p_i = (x_{i,y_i}) \rightarrow p'_i = (x'_{i,y_i})$

$$\mathbf{p'}_i = \mathbf{H}\mathbf{p}_i \implies \mathbf{A}_i \cdot \mathbf{h} = \mathbf{0}$$
 for i=1,2,3,4
2x9 9x1 2x1

All four matrix equations can be "stacked up" as

$$\begin{bmatrix} \mathbf{A}_{1} \\ \mathbf{A}_{2} \\ \mathbf{A}_{3} \\ \mathbf{A}_{3} \\ \mathbf{A}_{4} \end{bmatrix} \cdot \mathbf{h} = \mathbf{0}_{8x1}$$

or

 $\mathbf{A} \cdot \mathbf{h} = \mathbf{0}$ 8x9 9x1 8x1

Q: how many solutions for h? A: none B: one C: many

Consider 4 point-correspondences $p_i = (x_{i,y_i}) \rightarrow p'_i = (x'_{i,y_i})$

$$\mathbf{p'}_i = \mathbf{H}\mathbf{p}_i \implies \mathbf{A} \cdot \mathbf{h} = \mathbf{0}$$
for i=1,2,3,4
$$(*)$$

8 linear equations, 9 unknowns: trivial solution h=0? All solutions h form the (right) null space of A of dimension 1, but they represent the same transformation (as homographies can be scaled) To find one specific solution h, for now fix one element, *e.g.* i = 1 this may not work

more generally, should fix norm $||\mathbf{h}||=1$ (later)

$$\Rightarrow \begin{array}{c} \mathbf{A}_{1:8} \cdot \mathbf{h}_{1:8} = -\mathbf{A}_{9} \\ \hline \mathbf{8x8} & \mathbf{8x1} & \mathbf{8x1} \\ \mathbf{first 8 columns of A} & \mathbf{first 8 rows of h} & \mathbf{9th columns of A} \end{array}$$

Consider 4 point correspondences $p_i = (x_{i,y_i}) \rightarrow p'_i = (x'_{i,y_i})$

$$\mathbf{p'}_i = \mathbf{H}\mathbf{p}_i \implies \mathbf{A}_{1:8} \cdot \mathbf{h}_{1:8} = -\mathbf{A}_{9}$$

for i=1,2,3,4 8x8 8x1 8x1 8x1

More than 4 points

Consider 4 point correspondences $p_i = (x_{i,y_i}) \rightarrow p'_i = (x'_{i,y_i})$

$$\mathbf{p'}_i = \mathbf{H}\mathbf{p}_i \implies \mathbf{A}_{1:8} \cdot \mathbf{h}_{1:8} = -\mathbf{A}_{9}$$

for i=1,2,3,4 8x8 8x1 8x1 8x1

Questions:

What if 4 points correspondences are known with error?

Are there any benefits from knowing more point correspondences?

First, consider a simpler model fitting problem...

Simpler example: line fitting

Assume a set of data points (X_1, X_1') , (X_2, X_2') , (X_3, X_3') , ...

(e.g. person's height vs. weight)

We want to fit a model (e.g. a line) to predict X' from X

$$a \cdot X + b = X'$$

How many pairs (X_i, X_i') do we need to find *a* and *b*?

Simpler example: line fitting

Assume a set of data points (X_1, X_1) , (X_2, X_2) , (X_3, X_3) , ...

(e.g. person's height vs. weight)

We want to fit a model (e.g. a line) to predict X' from X

$$a \cdot X + b = X'$$

What if the data points (X_i, X_i) are noisy?

SVD: rough idea

Least squares line fitting

Data generated as $X'_i = a X_i + b + \delta X_i$ for a=0.2, b=20 and Normal noise δX_i

Least squares fail in presence of outliers

Data generated as $X'_i = a X_i + b + \delta X_i$ for a=0.2, b=20 and Normal noise δX_i

For cases with outliers we need a more robust method (e.g. RANSAC, coming soon)

Model fitting robust to outliers

We need a method that can separate inliers from outlliers

RANSAC

random sampling consensus

[Fischler and Bolles, 1981]

of inliers = 24

of inliers = 93

1. randomly sample two points from the set, get a line

- 2. count inliers *p* for <u>threshold</u> *T*
 - $\|p-l\| \le T$
- 3. repeat N times and select model with most inliers
- 4. Use *least squares* to fit a model (line) to this largest set of inliers
- Q: Assume know percentage of outliers in the data. How many pairs of points (N) should be sampled to have high confidence (e.g. 95%) that at least one pair are both inliers? [Fischler and Bolles, 1981]

Birthday Paradox: in a group of random 23 people the probability that at least two have same birthday is 50.7%

So, how do we find multiple models?

So, how do we find multiple models?

Homography from $N \ge 4$ points

Consider N point correspondences $p_i = (x_{i,y_i}) \rightarrow p'_i = (x'_{i,y_i})$

Approach 1: add constraint i = 1. So, there are only 8 unknowns.

Set up a system of linear equations for vector of unknowns $h_{1:8} = [a,b,c,d,e,f,g,h]^T$

$$\mathbf{A}_{1:8} \cdot \mathbf{h}_{1:8} = \mathbf{B} = -\mathbf{A}_{9}_{2Nx1}$$

solve
$$\min_{h_{1:8}} \|A_{1:8}h_{1:8} - B\|^{2} \quad (least-squares)$$

compute inverse for $\mathbf{A}_{1:8}^T \mathbf{A}_{1:8}$ as in line fitting, then $\mathbf{h}_{1:8} = (\mathbf{A}_{1:8}^T \cdot \mathbf{A}_{1:8})^{-1} \cdot \mathbf{A}_{1:8}^T \cdot (-\mathbf{A}_9)$

Homography from $N \ge 4$ points

Consider N point correspondences $p_i = (x_{i,y_i}) \rightarrow p'_i = (x'_{i,y_i})$

Approach 2: add constraint ||h||=1

solve

$$\min_{h:||h||=1} ||\mathbf{A} \cdot \mathbf{h}||$$

(homogeneous least-squares)

Solution: (unit) eigenvector of $\mathbf{A}^T \mathbf{A}$ corresponding to the smallest eigen-value (use SVD, see next slide) DLT method (see p.91 in Hartley and Zisserman)

Simple motivating example:

General case: use SVD (rough idea)

General case: use SVD (rough idea)

 $A^T A \cdot V_i = V W^2 V^T \cdot V_i = V W^2 \cdot e_i = w_i^2 \cdot V_i \implies can use eigen decomposition of A^T A instead of SVD of A.$

Least squares fail in presence of outliers

Least squares work if using "inliers" only (detecting these? – soon)

imR projected from inliers only

Least squares work if using "inliers" only (detecting these? - soon)

Least squares work if using "inliers" only (detecting these? – soon)

Question: how to remove outliers automatically?

the minimum number of matches to estimate a homography H

2. pair (p, p') counts as an inlier for a given homography H if $\|p' - Hp\| \le T$

Homography for good <u>four</u> matches has 21 inliers (p, p') $\|p' - Hp\| \leq T$ (randomly sampled)

Inliers for the randomly sampled homography with the largest inlier set

matched inliers || *p* '- *Hp* ||

The final automatic panorama result

RANSAC for robust model fitting

In general (for other models): always sample the smallest number of points/matches needed to estimate a model

RANSAC loop:

- 1. Select <u>four</u> feature pairs (at random)
- 2. Compute homography H (exact)
- 3. Count *inliers* (p, p') where $||p' Hp|| \le T$
- 4. Iterate N times (steps 1-3). Keep the largest set of inliers.
- 5. Re-compute <u>least-squares</u> H estimate on all of the inliers e.g. for algebraic errors (for simplicity)

Other examples of geometric model fitting

images from different view points (optical centers)

Merton College III data from Oxford's Visual Geometry Group http://www.robots.ox.ac.uk/~vgg/data/data-mview.html

Question: Is it possible to create a panorama from these images? (or, is there a *homography* that can match overlap in these images?)

Can a *homography* map/warp **a part** of the left image onto **a part** of the right image?

Other examples of geometric model fitting

images from different view points (optical centers)

Merton College III data from Oxford's Visual Geometry Group http://www.robots.ox.ac.uk/~vgg/data/data-mview.html

There should be a *homography* for each plane in the scene (Why?)

Question: How can we detect such *homographies*?

What do these multiple *homographies* give us?

Other examples of geometric model fitting

matched features (p,p'), as earlier

NOTE: good matches can be used for reconstructing 3D points if camera positions & orientations are known:

 $(p, p') \rightarrow X_p \in R^3$

(Triangulation, see next topic)

3. Inliers allow to segment planar regions

4. Segmentation allows to extend correspondence from inliers to any point pinside segment: (p, Hp)

5. Piece-wise planar3D scene reconstruction

What do these multiple *homographies* give us?

So, how do we find multiple models?

Fitting other geometric models

$$|| p - \theta || := ((x_p - c_x)^2 - (y_p - c_y)^2 - r^2)^2 \text{ for } \theta = \{c_c, c_y, r\}$$

Model fitting for arbitrary geometric models θ

Need:1) define an error measure w.r.t. model parameters $\| p - \theta \|$ 2) efficient method for minimizing the sum of errors
among inliers w.r.t. model parameters θ $\min_{\theta} \sum_{p \in S_{\theta}} \| p - \theta \|$

Fitting multiple homographies (e.g. planes)

using symmetric re-projection errors

 $|| p' - Hp || + || p - H^{-1}p' ||$

as an error measure between match (p, p')and homography H

Fitting multiple homographies (e.g. planes)

Fitting multiple homographies (e.g. planes)

same scene from a different view point...

Note very small steps between each floor

Geometric model fitting in vision

MODELS: lines, planes, homographies, affine transformations, **projection matrices, fundamental/essential matrices, etc.**

next topic

- single models (e.g. panorama stitching, camera projection matrix)

- multiple models (e.g. multi-plane reconstruction, multiple rigid motion)

FIRST STEP: detect some features (corners, LOGS, etc) and compute their descriptors (SIFT, MOPS, etc.)

SECOND STEP: match or track

THIRD STEP: fit models (minimization or errors/losses)