
#### 1D shifts along epipolar lines.

#### Assumption for stereo:

only camera moves, <u>3D scene is stationary</u>



vector field (motion) with a priori known direction

Slide credit: Yuri Boykov, Boqing Gong, Ce Liu, Steve Seitz, Larry Zitnick, Ali Farhadi

#### 1D shifts along epipolar lines.

Assumption for stereo:

only camera moves, <u>3D scene is stationary</u>



vector field (motion) with a priori known direction



We estimate only *magnitude* represented by a scalar field (disparity map)

In general, correspondences between two images may not be described by global models (like *homography*) or by shifts along known **epipolar lines**.



SOCIETY OF ROBOTS

if 3D scene is <u>NOT stationary</u> motion is **vector field** with **arbitrary directions** (no epipolar line constraints)

In general, correspondences between two images may not be described by global models (like *homography*) or by shifts along known **epipolar lines**.

For (non-rigid) motion the correspondences between two video frames are described by a general *optical flow* 

if 3D scene is <u>NOT stationary</u> motion is **vector field** with **arbitrary directions** (no epipolar line constraints)



SOCIETY OF ROBOTS

## The cause of motion

- Three factors in imaging process
  - Light
  - Object
  - Camera
- Varying either of them causes motion
  - Static camera, moving objects (surveillance)
  - Moving camera, static scene (3D capture)
  - Moving camera, moving scene (sports, movie)
  - Static camera, moving objects, moving light (time lapse)





## Motion scenarios (priors)



Static camera, moving scene



Moving camera, static scene



Moving camera, moving scene



Static camera, moving scene, moving light

#### We still don't touch these areas



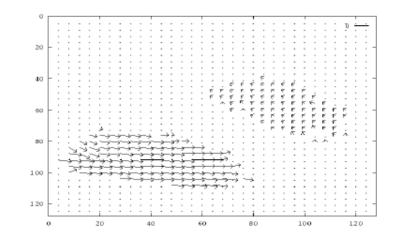




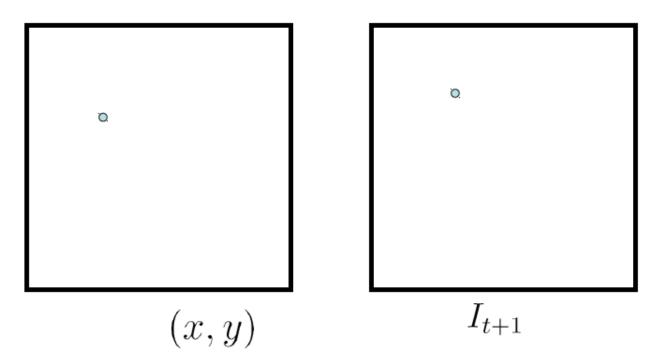


#### How can we recover motion?

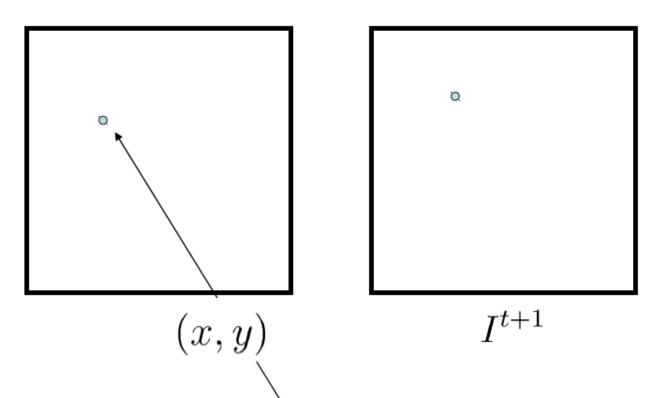
## **Recovering motion**


- Feature-tracking
  - Extract visual features (corners, textured areas) and "track" them over multiple frames
- Optical flow
  - Recover image motion at each pixel from spatio-temporal image brightness variations (optical flow)

#### Two problems, one registration method


B. Lucas and T. Kanade. <u>An iterative image registration technique with an application to</u> <u>stereo vision.</u> In *Proceedings of the International Joint Conference on Artificial Intelligence*, pp. 674–679, 1981.

#### Hamburg Taxi seq






## **Basic Setup**



## **Basic Question**



Where did this point move to in the next image?

## **Basic Assumption**

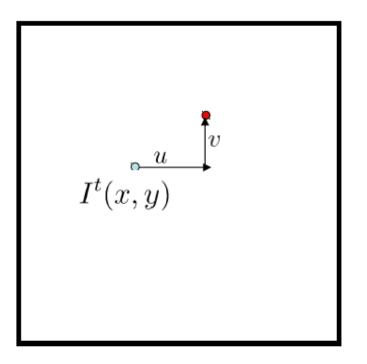
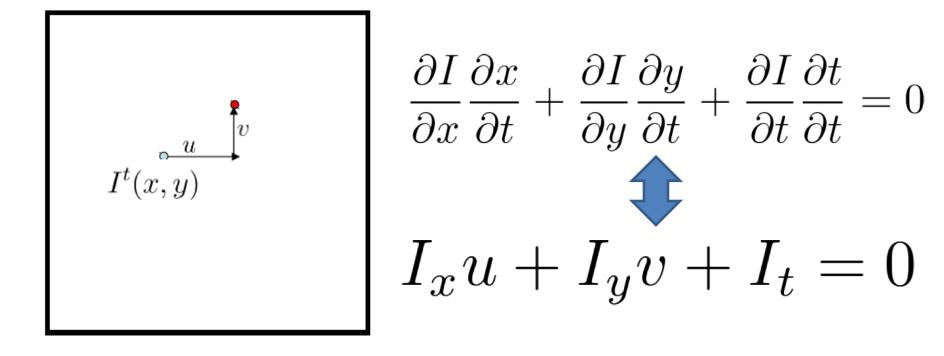



Image Brightness Constancy Equation:

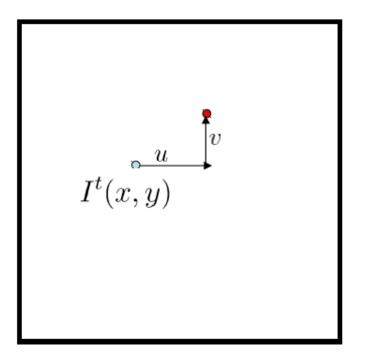
$$I(x, y, t) = I(x + \Delta x, y + \Delta y, t + \Delta t)$$

Assumes that the scene doesn't change intensity

## Understanding the assumption


$$I(x, y, t) \approx I(x_{t_0}, y_{t_0}, t_{t_0}) + \frac{\partial I}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial I}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial I}{\partial t} \frac{\partial t}{\partial t}$$

Again, if we assume that the intensity of the scene doesn't change, then


$$\begin{aligned} I(x, y, t) &= I(x_{t_0}, y_{t_0}, t_{t_0}) \\ \frac{\partial I}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial I}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial I}{\partial t} \frac{\partial t}{\partial t} = 0 \end{aligned}$$

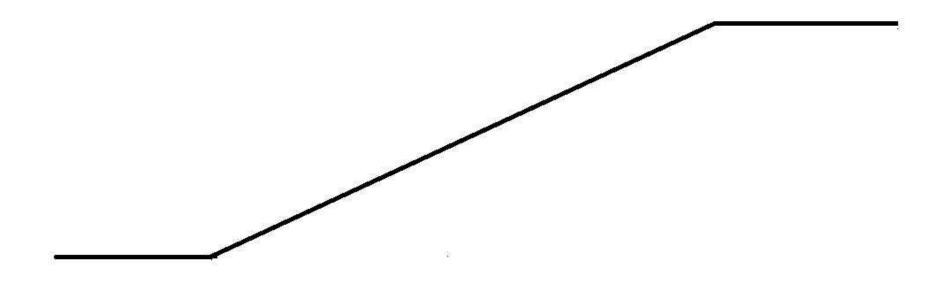
Extended reading: Taylor expansion

## Understanding the assumption

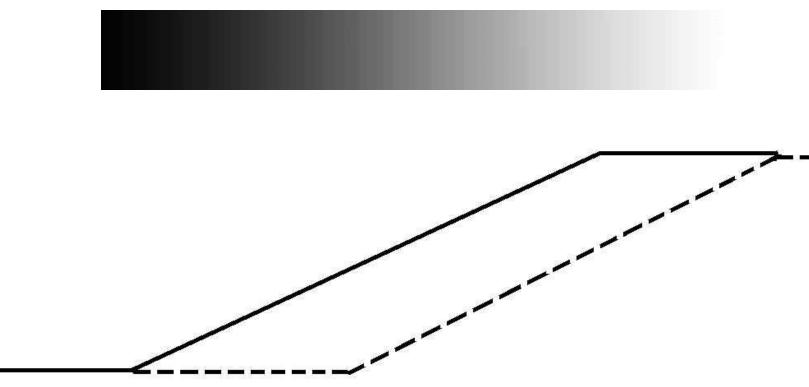



## What's Next: Another way of deriving the equation



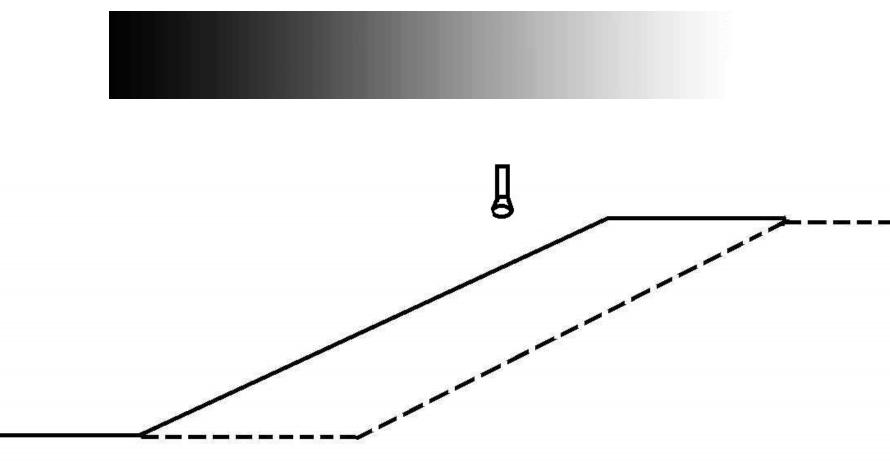

 $I_x u + I_y v + I_t = 0$ 

#### Imagine there is this (ramp) pattern of Intensity (image brightness) being viewed from above.

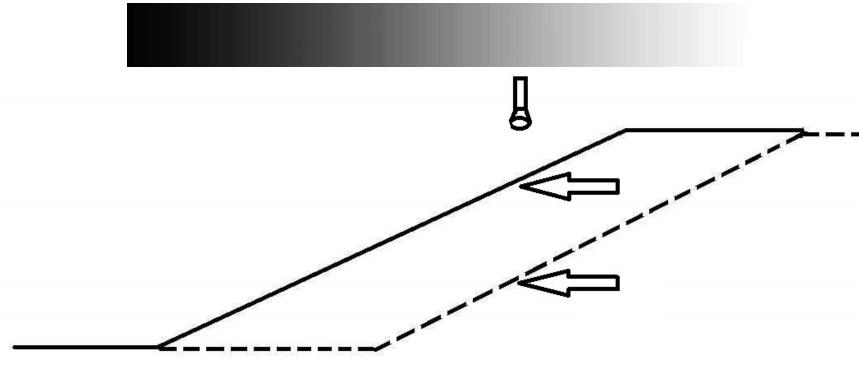



# The ramp's pattern of brightness (Intensity Profile) can be viewed as a plot.



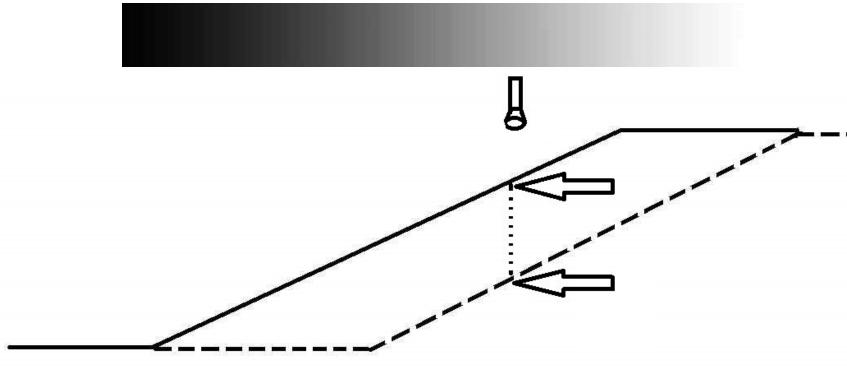



#### Now, Suppose the pattern moves to the right.



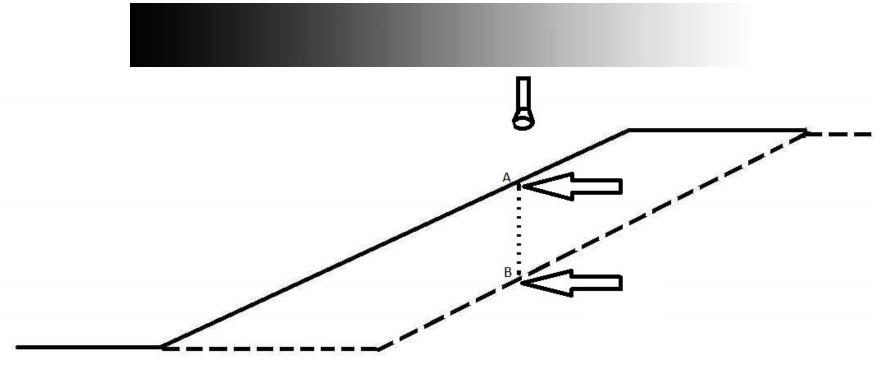

Dotted line shows where pattern has moved to, within unit time.

#### Now, Suppose a Single Pixel Camera saw this




#### The Sensor would see the brightness change

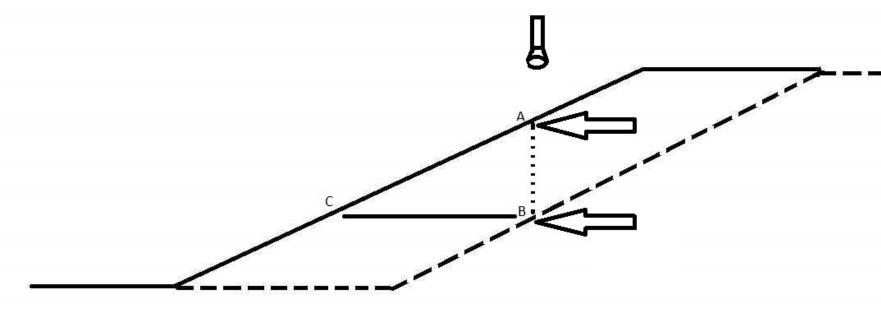



The 2 arrows show what two brightnesses the detector sees

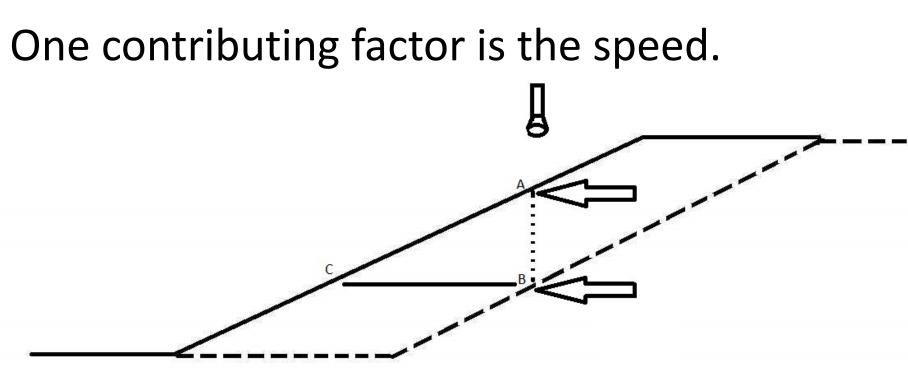
#### The Sensor would see the brightness change



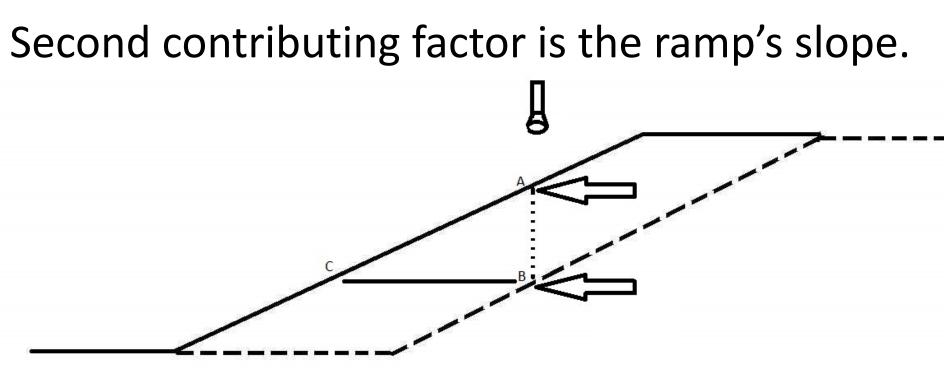
The Dotted segment shows the amount of brightness drop.


#### The Sensor would see the brightness change

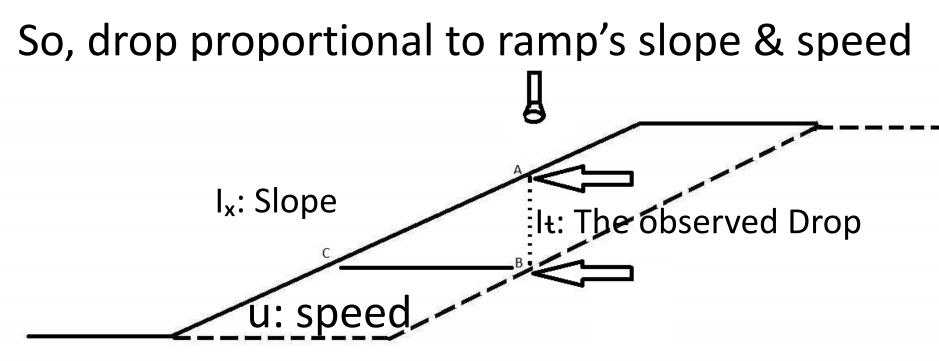



The brightness drop is given by the distance between A and B.

What physical properties of this situation will determine how much brightness drop happens?


## One factor contributing to the quantity of the brightness drop, is the speed.

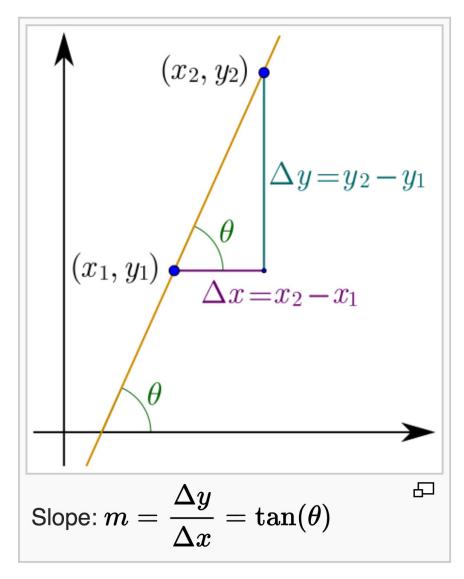



Speed is given by the lowermost dashed segment, which is the same as the length of the segment CB.



Make sure you understand that the faster speed will give a bigger drop, while slower speed will give smaller drop.




Make sure you understand that the steeper slope will give a bigger drop, while shallower slope will give a smaller drop.



Let us give symbols to these quantities, so we can work them.

The ramp itself is labeled I(x), for image or intensity function, varying along x. Speed is labeled u. Drop is labeled I<sub>t</sub>. Slope is labeled I<sub>x</sub>.

Describe slope in math





# So, drop proportional to ramp's slope & speed

So, 
$$-It = u \cdot I_x$$

#### Now, we need to derive a similar equation for the vertical direction.



So, similar reasoning: Suppose the region has variation only in the y-direction (not shown here, the original pattern is shown, you must imagine the new pattern); suppose that the motion is in the vertical direction (called v, now), suppose there is a single pixel sensor (camera) placed over the center of the pattern.

Then, by similar reasoning as before, we get that:  $-|t_{\gamma} = V \cdot |_{\gamma}$ 

We had written I<sub>t</sub> earlier, when we only had one dimension to play in. Now, to keep things separate, we say  $I_{t_{\gamma}}$ , by which we mean the drop seen by the sensor, but only that portion of the drop that is due to vertical aspects of this problem (in the original equation, to describe the horizontal behavior, we will now be using  $I_{t_x}$ .) In the new equation here, the meaning of  $I_{\gamma}$  should be obvious, it is the vertical component of the image gradient.

In practice, the motion could be along both x and y. So, sum the "drops",

 $(-|t_x) + (-|t_\gamma) = u \cdot |_x + v \cdot |_\gamma$ 

The terms on the Left are to be combined into one term It.

 $-\mathbf{It} = \mathbf{u} \cdot \mathbf{I}_{\mathbf{x}} + \mathbf{v} \cdot \mathbf{I}_{\mathbf{v}}$ 

This is a famous equation in the field of Computer Vision, and it has several names:

- 1) 2d motion Equation
- 2) Image motion Equation
- 3) Optical Flow Equation (this term is from perceptual psychology)

# Comparing with the first way of deriving the optical flow equation

$$I(x, y, t) \approx I(x_{t_0}, y_{t_0}, t_{t_0}) + \frac{\partial I}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial I}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial I}{\partial t} \frac{\partial t}{\partial t}$$

Again, if we assume that the intensity of the scene doesn't change, then

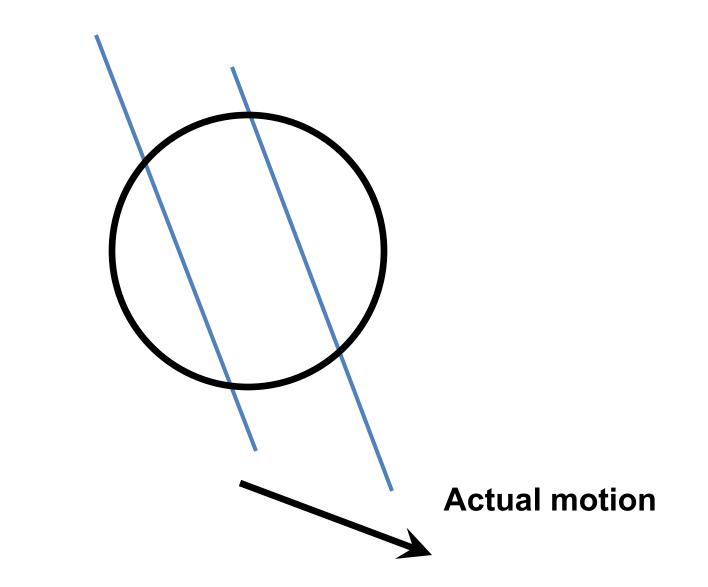
$$I(x, y, t) = I(x_{t_0}, y_{t_0}, t_{t_0})$$
  
$$\frac{\partial I}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial I}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial I}{\partial t} \frac{\partial t}{\partial t} = 0$$
  
$$I_x u + I_y v + I_t = 0$$

## The brightness constancy constraint

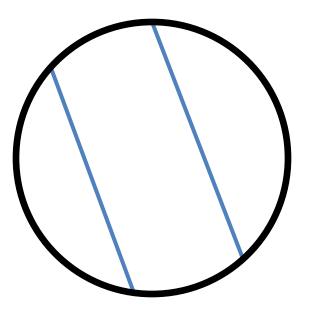
Can we use this equation to recover image motion (u,v) at each pixel?

 $\nabla \mathbf{I} \cdot \begin{bmatrix} \mathbf{u} & \mathbf{v} \end{bmatrix}^{\mathrm{T}} + \mathbf{I}_{\mathrm{t}} = \mathbf{0}$ 

• How many equations and unknowns per pixel?

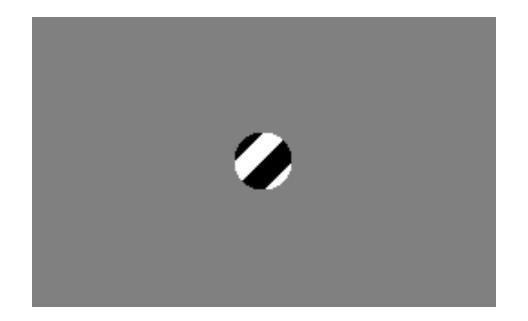

•One equation (this is a scalar equation!), two unknowns (u,v)

(u,v)


The component of the motion perpendicular to the gradient (i.e., parallel to the edge) cannot be measured

If (u, v) satisfies the equation, so does (u+u', v+v') if  $\nabla I \cdot [u' v']^T = 0$ (u', v') (u+u)

## The aperture problem




## The aperture problem





### The barber pole illusion



http://en.wikipedia.org/wiki/Barberpole\_illusion

### The barber pole illusion





http://en.wikipedia.org/wiki/Barberpole\_illusion

# Solving the ambiguity...

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In *Proceedings of th International Joint Conference on Artificial Intelligence*, pp. 674–679, 1981.

- How to get more equations for a pixel?
- Spatial coherence constraint
- Assume the pixel's neighbors have the same (u,v)

If we use a 5x5 window, that gives us 25 equations per pixel

$$0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$$

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

# Solving the ambiguity...

• Least squares problem:

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

$$A \quad d = b$$
  
25x2 2x1 25x1

### Matching patches across images

• Overconstrained linear system

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix} A = b$$

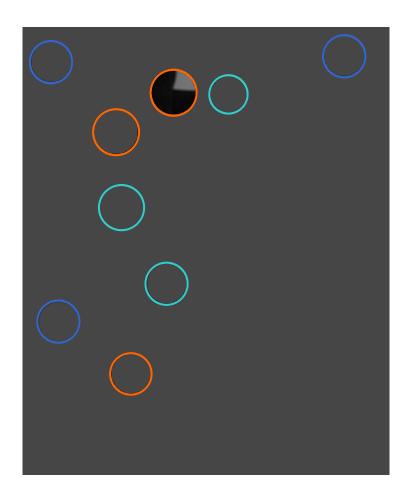
$$25 \times 2 = 2 \times 1 = 25 \times 1$$

Least squares solution for d given by  $(A^T A) d = A^T b$ 

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad \qquad A^T b$$

The summations are over all pixels in the K x K window

Conditions for solvability Optimal (u, v) satisfies Lucas-Kanade equation  $\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$   $A^T A \qquad A^T b$ 

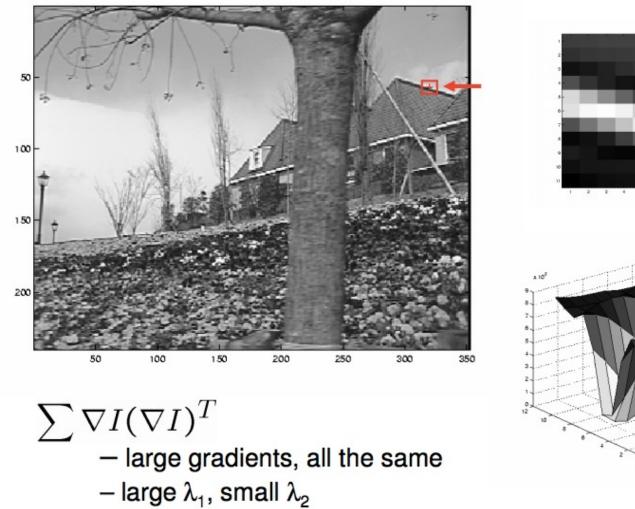

When is this solvable? I.e., what are good points to track?

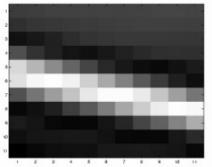
- **A<sup>T</sup>A** should be invertible
- **A<sup>T</sup>A** should not be too small due to noise
  - eigenvalues  $\lambda_1$  and  $\lambda_2$  of  $\textbf{A^T}\textbf{A}$  should not be too small
- **A<sup>T</sup>A** should be well-conditioned
  - $\lambda_1 / \lambda_2$  should not be too large ( $\lambda_1$  = larger eigenvalue)

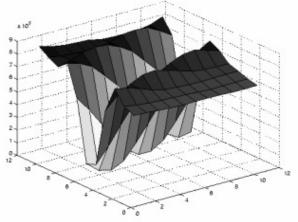
Does this remind you of anything?

Criteria for Harris corner detector

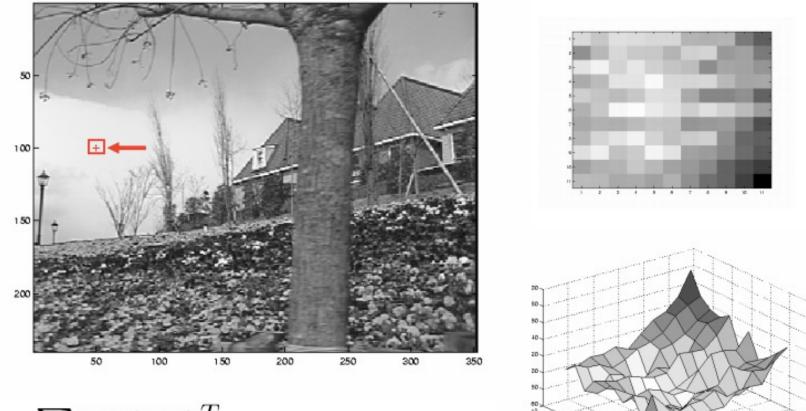
#### Aperture problem





Corners

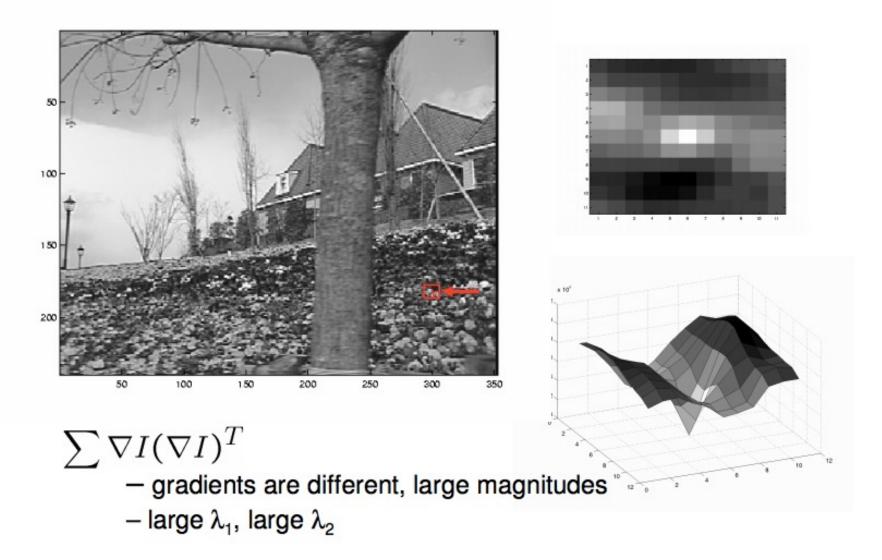

Lines

Flat regions


# Edge








### Low Texture Region



- $\sum \nabla I (\nabla I)^T \\ \text{gradients have small magnitude}$ 
  - small  $\lambda_1$ , small  $\lambda_2$

### High Texture Region



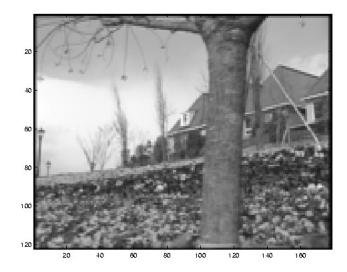
# Errors in Lukas-Kanade

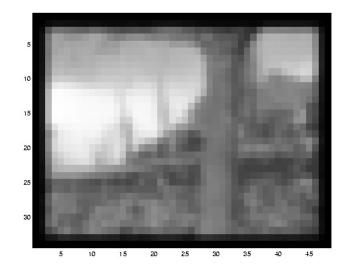
- What are the potential causes of errors in this procedure?
  - Suppose A<sup>T</sup>A is easily invertible
  - Suppose there is not much noise in the image

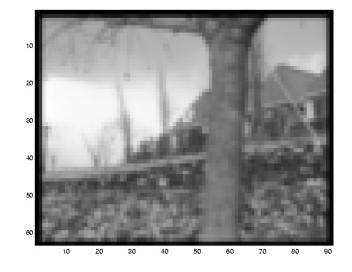
When our assumptions are violated

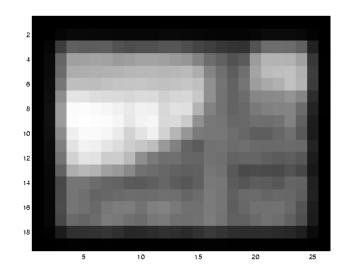
- Brightness constancy is **not** satisfied
- The motion is **not** small
- A point does **not** move like its neighbors
  - window size is too large
  - what is the ideal window size?

### Dealing with larger movements: Iterative refinement Original (x,y) position

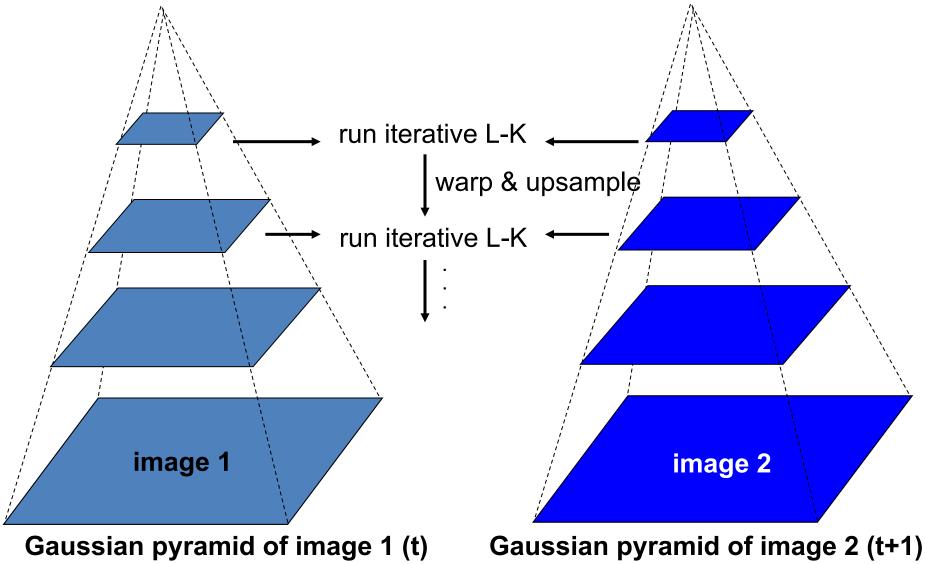

- Initialize (x',y') = (x,y)1.
- $I_t = I(x', y', t+1) I(x, y, t)$ 2. Compute (u,v) by  $\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v_{\mathsf{N}} \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$ 2<sup>nd</sup> moment matrix for feature displacement patch in first image
- Shift window by (u, v): x' = x' + u; y' = y' + v;3.
- Recalculate  $I_t$ 4.
- 5. Repeat steps 2-4 until small change
  - Use interpolation for subpixel values


# Revisiting the small motion assumption





- Is this motion small enough?
  - Probably not—it's much larger than one pixel (2<sup>nd</sup> order terms dominate)
  - How might we solve this problem?

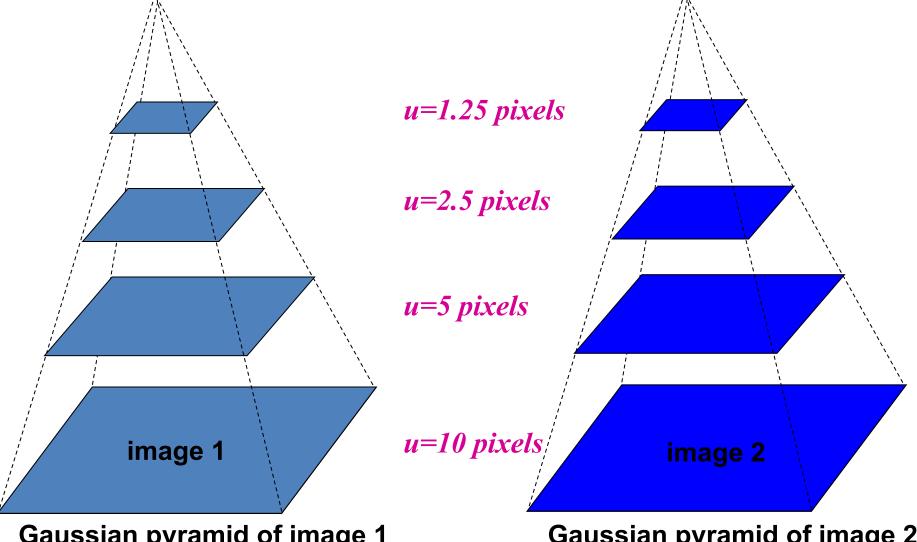
#### Reduce the resolution!











#### Coarse-to-fine optical flow estimation



# A Few Details

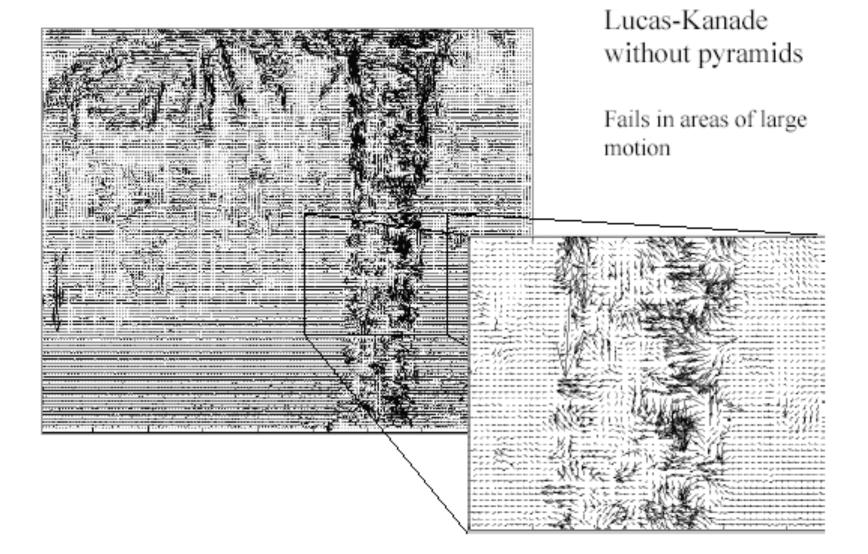
- Top Level
  - Apply L-K to get a flow field representing the flow from the first frame to the second frame.
  - Apply this flow field to warp the first frame toward the second frame.
  - Rerun L-K on the new warped image to get a flow field from it to the second frame.
  - Repeat till convergence.
- Next Level
  - Upsample the flow field to the next level as the first guess of the flow at that level.
  - Apply this flow field to warp the first frame toward the second frame.
  - Rerun L-K and warping till convergence as above.
- Etc.

#### Coarse-to-fine optical flow estimation



Gaussian pyramid of image 1

Gaussian pyramid of image 2


### The Flower Garden Video

What should the optical flow be?



|                                       | _ |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |   |   |    |          |     |   |     |    |     |    |     |     |     |   |
|---------------------------------------|---|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---|---|----|----------|-----|---|-----|----|-----|----|-----|-----|-----|---|
|                                       | - | * | -   | **  | -   | -   | -   | **  | ••• | -   | -   | -   | **  | -   | *** | -   | -   | -   |     | *** |     |   | - |    | -        | *   | - |     | 1  | 1   | +  | -   | **  | 1   |   |
|                                       | - | - | -   |     |     | ••• | ••  | ••  | ••• | -   | -   | -   | -   | **  | -   | -   | -   | -   |     |     |     |   |   |    | -        | -   | * | ~   | ~  | ~   | +- | ••• | ••• | 1   | 1 |
|                                       |   | - | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |     | -   |     |   |   |    | _        | -   | - | -   | -  |     | -  | -   | •   |     |   |
|                                       | 1 | _ | _   | _   |     |     |     | _   |     | _   | 1   |     |     |     |     | -   |     | _   |     |     |     |   |   |    | <u> </u> | ۰.  |   |     |    |     |    |     |     |     |   |
|                                       |   |   |     |     |     |     |     |     |     | 2   | 1   | 1   | 1   | 2   | 2   |     |     | τ.  |     | -   |     |   |   |    |          |     |   |     |    |     |    |     |     |     |   |
|                                       |   | • | *   | *   | •   |     |     | -   | -   |     |     |     | -   | •   | -   |     | -   | -   |     |     |     |   |   |    |          |     |   |     | 1  | 1   |    |     | 1   | 1   |   |
|                                       | * | • | +   | +   | -   | *   | -   |     | -   | +   | +   | 1   | 1   | -   | 1   | 1   |     | 1   | 1   | 17  | ~   |   | - | -  | *        | 17  |   |     | 1  | . 7 | 1  |     |     |     | 1 |
|                                       | ~ | * | -   | ~   | -   | -   | •   | -   | ~   | ~   | +-  | -   | 1   | -   | - 7 | - 7 | - 1 |     |     | - * | -   |   |   | -  | -        | -   | - | -   | -  | - 7 | -  | -   | -   | -   |   |
|                                       | - |   | -   | ~   | ~   | ~   | ~   | ~   | ~   | ~   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | - 4 |   | - | -  | -        | -   | - | -   | -  |     | -  | -   | -   | -   |   |
|                                       |   |   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |     |   |   |    | _        | -   | - | -   | -  |     |    | -   | -   | -   |   |
|                                       |   |   |     |     |     |     |     | 1   | 1   |     |     |     |     |     |     |     |     |     |     |     |     |   |   |    | _        |     |   |     |    |     |    |     |     |     |   |
|                                       |   |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |   |   |    |          |     |   |     |    |     |    |     |     |     |   |
|                                       |   | 1 | - 1 | - 1 |     |     |     | 1   |     |     |     |     |     |     |     |     | - 1 | - 1 |     |     |     |   |   |    |          |     | - | 1   | 1  | 1   | 1  |     |     |     | 1 |
|                                       | - | 1 | . 7 | . 7 | . 7 | . 7 | 1   |     |     | . 7 | . 7 | -   | . 1 | 1   | . 7 | . 7 | - 7 | - 7 | 1   | . 1 | -   | - | - | -  | . *      | . 7 |   | . * | 17 | 17  | 17 | 17  | - 7 | - 7 | 1 |
|                                       | ~ | 2 | - 7 | - 7 | - 7 | - 7 | - 7 | - 2 | - 2 | 1   | - 7 | - 7 | . * | - 1 | - 1 | - 2 | - 2 | - 2 | . * |     |     |   | - | -  |          | . 7 | - | -   | -  | . 7 | -  | -   | -   | -   |   |
|                                       | ~ | - | ~   | ~   | ~   | ~   | ~   |     | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |   | - | -  | -        | -   | - | -   | -  | -   | -  | -   | -   | -   | - |
|                                       | ~ |   | -   | -   | -   | -   | -   |     |     |     |     | -   | 1   | 1   | -   | 1   | 1   | -   |     | -   | -   |   |   | -  | -        | -   | - | -   | -  | -   | -  | -   | -   | -   | - |
|                                       |   |   | 1   |     |     |     |     |     | 1   |     |     |     |     |     |     |     |     |     |     |     |     |   |   |    | _        | 2   | 2 |     |    |     |    |     |     |     |   |
|                                       |   |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |   |   |    |          |     |   |     |    |     |    |     |     |     | 1 |
|                                       |   | 1 |     |     |     |     |     | -   |     |     |     |     |     |     |     |     |     |     |     |     |     |   |   | ÷. |          |     |   |     |    | -   |    | -   |     | -   | 1 |
|                                       | ~ | 1 | - 7 | 1   |     | - 7 | -   | -   | -   | 1   | 1   | 1   | 1   | - 7 | -   |     | . * | . * |     | 1   |     | - | - | -  | . *      | 1   | 1 | 1   | -  | -   | -  | -   | -   | -   | 1 |
|                                       | ~ | ~ | ~   | ~   | -   | ~   | -   | ~   | ~   | ~   | ~   | ~   | -   | -   | -   | -   | -   | -   | ~   | ~   | -   | - | - | *  | -        | -   | - | -   | -  | -   | -  | -   | -   | -   | - |
|                                       | - | - | -   | -   | -   | ~   | ~   | ~   | ~   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |     | -   | - | - | -  | -        | -   | - | -   | -  | +   | -  | +   | +   | ÷   | - |
|                                       | - | - | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |     | -   |   |   | -  | -        | +   | + | +   | -  | -   | -  | -   | -   | -   | - |
|                                       | ~ |   | 2   | -   | -   | -   | -   | -   | -   | -   |     | 2   |     |     | -   |     |     | -   |     |     | _   |   |   |    |          | -   | - | -   | -  | -   | -  | -   | -   | -   |   |
| · · · · · · · · · · · · · · · · · · · |   |   |     |     |     |     |     |     |     |     |     |     |     | 1   |     | 1   | 1   | 1   | 1   |     |     | 2 | 1 | 2  |          | 1   |   | -   | -  |     | _  | _   | _   | _   |   |
|                                       | - | - | -   | -   | -   | -   | -   | -   |     |     |     | ÷   | 1   | -   | -   |     | 1   | -   | -   |     |     |   |   | 1  |          | -   | - | -   | -  | -   | Ξ. | Ξ.  | Τ.  | -   | - |
|                                       | - | + | -   | +   | +   | -   | +   | *   | *   | *   | +   | +   | +   | +   | -   | -   | *   | +   | -   | -   | -   | - | 1 | *  | *        | +   | + | *   | 1  | +   | -  | -   | -   | -   | - |

### **Optical Flow Results**



### **Optical Flow Results**



#### From 1D correspondence (stereo) to 2D correspondence problems (motion) color-consistency

 $p \in G$ 

Horn-Schunck 1981 optical flow regularization

- 2<sup>nd</sup> order optimization (pseudo Newton) - Rox/Cox/Ishikawa's method only works for scalar-valued variables

 $(I_p^t - I_{p+v_p}^{t+1})^2$ 

SOCIETY OF ROBOTS

regularity  $\sum D_p(v_p) + \sum V(v_p, v_q)$  $\{p,q\} \in N$ 

 $\|v \cdot \|v_p - v_q\|^2$ 

optical flow  $\mathbf{v} = \{v_n\}$ 

more difficult problem need 2D shift vectors  $V_D$ (no epipolar line constraint)

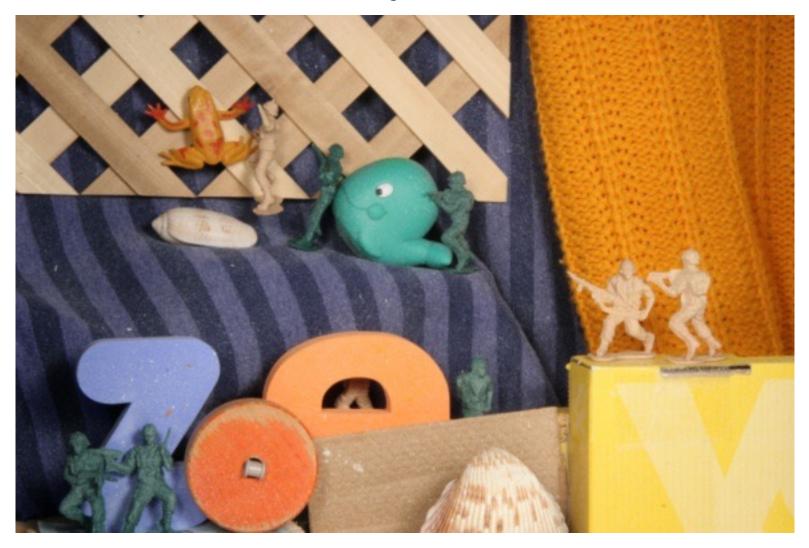
if 3D scene is NOT stationary motion is vector field with **arbitrary** directions (no epipolar line constraints)

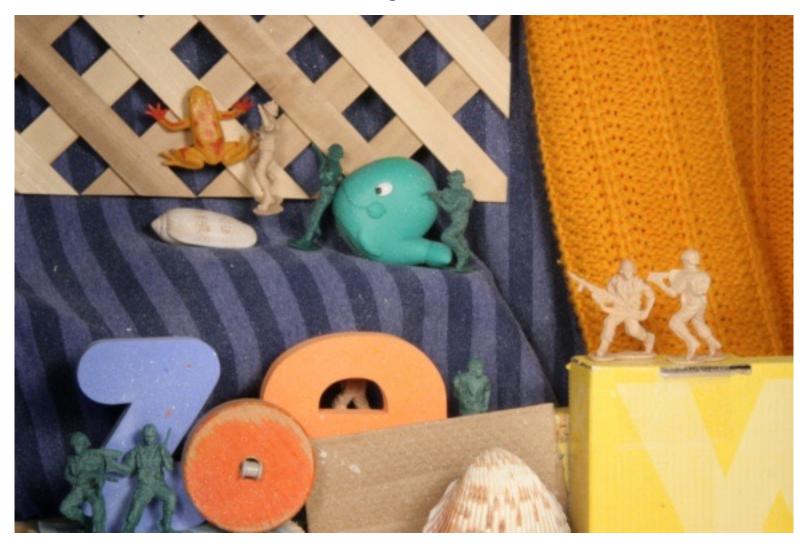
#### Horn-Schunck Optical Flow (1981)

brightness constancy

small motion

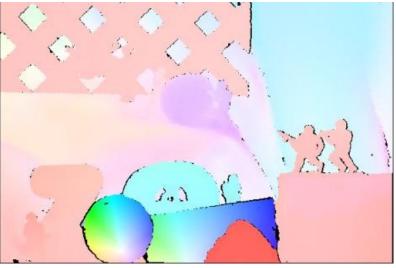



#### Lucas-Kanade Optical Flow (1981)

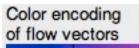

method of differences

**'constant' flow** 

(flow is constant for all pixels)

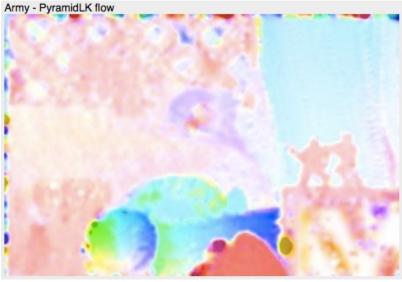

local method



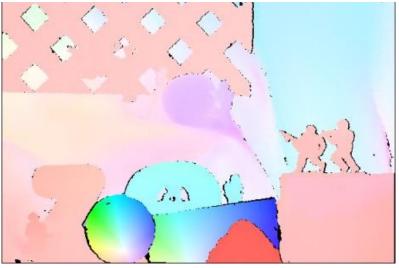



- Middlebury flow page
  - <u>http://vision.middlebury.edu/flow/</u>

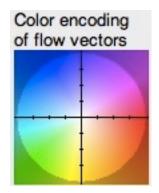





#### **Ground Truth**



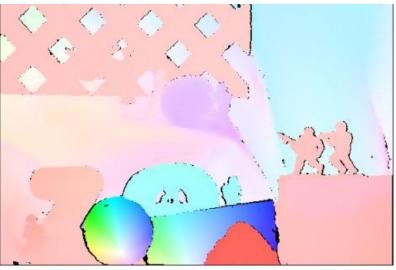




- Middlebury flow page
  - <u>http://vision.middlebury.edu/flow/</u>

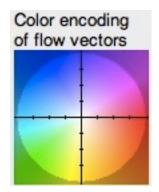


Lucas-Kanade flow




#### **Ground Truth**




- Middlebury flow page
  - <u>http://vision.middlebury.edu/flow/</u>



Best-in-class alg



#### **Ground Truth**

