
From 1D correspondence (stereo)
to 2D correspondence problems (motion)

1D shifts along epipolar lines.

Assumption 
for stereo:

only camera moves,
3D scene is stationary

vector field (motion) with a priori known direction
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From 1D correspondence (stereo)
to 2D correspondence problems (motion)

In general, correspondences between two images 
may not be described by global models (like homography) or

by shifts along known epipolar lines.

For (non-rigid) motion the correspondences between 
two video frames are described by a general optical flow

motion is
vector field

with arbitrary
directions

(no epipolar line constraints) 

if 3D scene 
is NOT stationary



The cause of motion

• Three factors in imaging process
– Light
– Object
– Camera 

• Varying either of them causes motion
– Static camera, moving objects (surveillance)
– Moving camera, static scene (3D capture)
– Moving camera, moving scene (sports, movie)
– Static camera, moving objects, moving light (time lapse)



Motion scenarios (priors)

Static camera, moving scene Moving camera, static scene

Moving camera, moving scene Static camera, moving scene, moving light



We still don’t touch these areas



How can we recover motion?



Recovering motion

• Feature-tracking
– Extract visual features (corners, textured areas) and “track” them over 

multiple frames

• Optical flow
– Recover image motion at each pixel from spatio-temporal image 

brightness variations (optical flow)

B. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence, pp. 
674–679, 1981.

Two problems, one registration method











Understanding the assumption

Extended reading: Taylor expansion



Understanding the assumption



What’s Next: 
Another way of deriving the equation



Imagine there is this (ramp) pattern of Intensity 
(image brightness) being viewed from above.



The ramp’s  pattern of  brightness  (Intensity 
Profile) can be viewed as a plot.



Now, Suppose the pattern moves to the right.

Dotted line shows where pattern has moved to, within unit 
time.  



Now, Suppose a Single Pixel Camera saw this



The Sensor would see the brightness change

The 2 arrows  show what two brightnesses the detector sees



The Sensor would see the brightness change

The Dotted segment shows the amount of brightness drop.  



The Sensor would see the brightness change

The brightness drop is given by the distance between A and B.



What physical properties of this situation will
determine how much brightness drop happens?



One factor contributing to the quantity of  the 
brightness drop,  is the speed.

Speed is given by the lowermost dashed segment,  which is 
the same as the length of the segment CB.



One contributing factor is the speed.

Make sure you understand that the faster speed will give a 
bigger drop, while slower speed will give smaller drop.



Second contributing factor is the ramp’s slope.

Make sure you understand that the steeper slope will give a 
bigger drop, while shallower slope will give a smaller drop.



So, drop proportional to ramp’s slope & speed

Let us give symbols to these quantities, so we can work them.
The ramp itself is labeled I(x), for image or intensity function, 

varying along x. Speed is labeled u.   Drop is labeled Iᵼ. 
Slope is labeled Iₓ.

u: speed

Iᵼ: The observed DropIₓ: Slope



Describe slope in math



So, drop proportional to ramp’s slope & speed

So,   - Iᵼ  =  u · Iₓ

u: speed

Iᵼ: The observed DropIₓ: Slope



Now, we need to derive a similar equation for the vertical direction.

So, similar reasoning: Suppose the region has variation  only in the y-direction (not 
shown here, the original pattern is shown, you must imagine the new pattern); 
suppose that the motion is in the vertical direction (called v, now), suppose there is 
a single pixel sensor (camera) placed over the center of the pattern.

Then, by similar reasoning as before, we get that:     - Iᵼᵧ =  v · Iᵧ
We had written Iᵼ  earlier, when we only had one dimension to play in. Now, to keep 

things separate, we say Iᵼᵧ , by which we mean the drop seen by the sensor, but 
only that portion of the drop that is due to vertical  aspects of this problem (in the 
original equation, to describe the horizontal behavior, we will now be using Iᵼₓ.) In 
the new equation here, the meaning of Iᵧ should be obvious, it is the vertical 
component of the image gradient.



In practice, the motion could be along both x and y.
So, sum the “drops”,

(- Iᵼₓ)   +  (- Iᵼᵧ)     =     u · Iₓ    +     v · Iᵧ
The terms  on the Left are to be combined into one  term  Iᵼ. 

- Iᵼ      =     u · Iₓ    +     v · Iᵧ

This is a famous equation in the field of Computer Vision, and it has  
several names:

1) 2d motion Equation
2) Image motion Equation
3) Optical Flow Equation   (this term is from perceptual psychology)



Comparing with the first way of 
deriving the optical flow equation



The brightness constancy constraint

• How many equations and unknowns per pixel?

The component of the motion perpendicular to the gradient 
(i.e., parallel to the edge) cannot be measured

edge

(u,v)

(u’,v’)

gradient

(u+u’,v+v’)

If (u, v) satisfies the equation, 
so does (u+u’, v+v’ ) if

•One equation (this is a scalar equation!), two unknowns (u,v)

[ ] 0IvuI t
T =+×Ñ

[ ] 0'v'uI T =×Ñ

Can we use this equation to recover image motion (u,v) at each 
pixel?



The aperture problem

Actual motion



The aperture problem

Perceived motion



The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

http://en.wikipedia.org/wiki/Barberpole_illusion


The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

http://en.wikipedia.org/wiki/Barberpole_illusion


Solving the  ambiguity…

• How to get more equations for a pixel?
• Spatial coherence constraint
• Assume the pixel’s neighbors have the same (u,v)

– If we use a 5x5 window, that gives us 25 equations per pixel

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Proceedings of the 
International Joint Conference on Artificial Intelligence, pp. 674–679, 1981.



• Least squares problem:
Solving the  ambiguity…



Matching patches across images
• Overconstrained linear system

The summations are over all pixels in the K x K window

Least squares solution for d given by



Conditions for solvability
Optimal (u, v) satisfies Lucas-Kanade equation

Does this remind you of anything?

When is this solvable?  I.e., what are good points to track?
• ATA should be invertible 
• ATA should not be too small due to noise

– eigenvalues l1 and l 2 of ATA should not be too small
• ATA should be well-conditioned

– l 1/ l 2 should not be too large (l 1 = larger eigenvalue)

Criteria for Harris corner detector 



Aperture problem

Corners Lines Flat regions
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Errors in Lukas-Kanade

• What are the potential causes of errors in this procedure?
– Suppose ATA is easily invertible
– Suppose there is not much noise in the image

When our assumptions are violated
• Brightness constancy is not satisfied
• The motion is not small
• A point does not move like its neighbors

– window size is too large
– what is the ideal window size?



Dealing with larger movements: 
Iterative refinement

1. Initialize (x’,y’) = (x,y)
2. Compute (u,v) by

3. Shift window by (u, v): x’=x’+u; y’=y’+v;
4. Recalculate It
5. Repeat steps 2-4 until small change
• Use interpolation for subpixel values

2nd moment matrix for feature 
patch in first image displacement

It = I(x’, y’, t+1) - I(x, y, t) 

Original (x,y) position
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Revisiting the small motion 
assumption

• Is this motion small enough?
– Probably not—it’s much larger than one pixel (2nd order terms dominate)
– How might we solve this problem?



50

Reduce the resolution!



image Iimage J

Gaussian pyramid of image 1 (t) Gaussian pyramid of image 2 (t+1)

image 2image 1

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample 

.

.

.
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A Few Details• Top Level
– Apply L-K to get a flow field representing the flow from 

the first frame to the second frame.
– Apply this flow field to warp the first frame toward the 

second frame.
– Rerun L-K on the new warped image to get a flow field 

from it to the second frame.
– Repeat till convergence.

• Next Level
– Upsample the flow field to the next level as the first 

guess of the flow at that level.
– Apply this flow field to warp the first frame toward the 

second frame.
– Rerun L-K and warping till convergence as above.

• Etc.



image Iimage H

Gaussian pyramid of image 1 Gaussian pyramid of image 2

image 2image 1 u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation
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The Flower Garden Video

What should the
optical flow be?



Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



From 1D correspondence (stereo)
to 2D correspondence problems (motion)

optical flow

more difficult problem 

need 2D shift vectors vp
= =

v = {vp}

Horn-Schunck 1981 
optical flow regularization

- 2nd order optimization
(pseudo Newton)

- Rox/Cox/Ishikawa’s method only 
works for scalar-valued variables 

(no epipolar line constraint)

color-consistency regularity

motion is
vector field

with arbitrary
directions

(no epipolar line constraints) 

if 3D scene 
is NOT stationary





Flow quality evaluation



Flow quality evaluation



• Middlebury flow page
– http://vision.middlebury.edu/flow/

Ground Truth

Flow quality evaluation

http://vision.middlebury.edu/flow/


• Middlebury flow page
– http://vision.middlebury.edu/flow/

Ground TruthLucas-Kanade flow

Flow quality evaluation

http://vision.middlebury.edu/flow/


• Middlebury flow page
– http://vision.middlebury.edu/flow/

Ground TruthBest-in-class alg

Flow quality evaluation

http://vision.middlebury.edu/flow/

