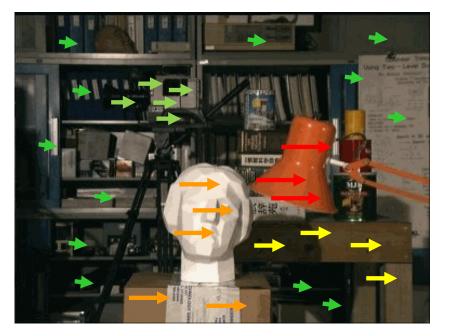
1D shifts along epipolar lines.

Assumption for stereo:

only camera moves, <u>3D scene is stationary</u>



vector field (motion) with a priori known direction

Slide credit: Yuri Boykov, Boqing Gong, Ce Liu, Steve Seitz, Larry Zitnick, Ali Farhadi

1D shifts along epipolar lines.

Assumption for stereo:

only camera moves, <u>3D scene is stationary</u>

vector field (motion) with a priori known direction

We estimate only *magnitude* represented by a scalar field (disparity map)

In general, correspondences between two images may not be described by global models (like *homography*) or by shifts along known **epipolar lines**.

SOCIETY OF ROBOTS

if 3D scene is <u>NOT stationary</u> motion is **vector field** with **arbitrary directions** (no epipolar line constraints)

In general, correspondences between two images may not be described by global models (like *homography*) or by shifts along known **epipolar lines**.

For (non-rigid) motion the correspondences between two video frames are described by a general *optical flow*

if 3D scene is <u>NOT stationary</u> motion is **vector field** with **arbitrary directions** (no epipolar line constraints)

SOCIETY OF ROBOTS

The cause of motion

- Three factors in imaging process
 - Light
 - Object
 - Camera
- Varying either of them causes motion
 - Static camera, moving objects (surveillance)
 - Moving camera, static scene (3D capture)
 - Moving camera, moving scene (sports, movie)
 - Static camera, moving objects, moving light (time lapse)

Motion scenarios (priors)

Static camera, moving scene

Moving camera, static scene

Moving camera, moving scene

Static camera, moving scene, moving light

We still don't touch these areas

How can we recover motion?

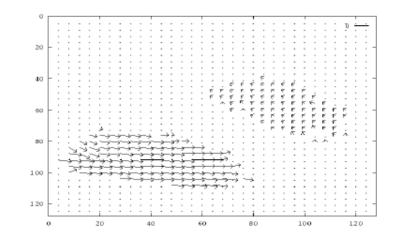
Recovering motion

- Feature-tracking
 - Extract visual features (corners, textured areas) and "track" them over multiple frames
- Optical flow
 - Recover image motion at each pixel from spatio-temporal image brightness variations (optical flow)

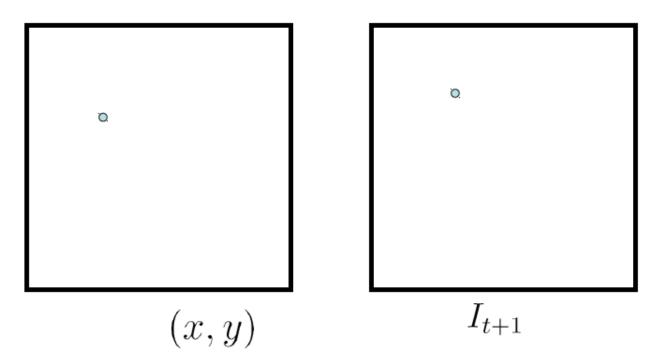
Two problems, one registration method

B. Lucas and T. Kanade. <u>An iterative image registration technique with an application to</u> <u>stereo vision.</u> In *Proceedings of the International Joint Conference on Artificial Intelligence*, pp. 674–679, 1981.

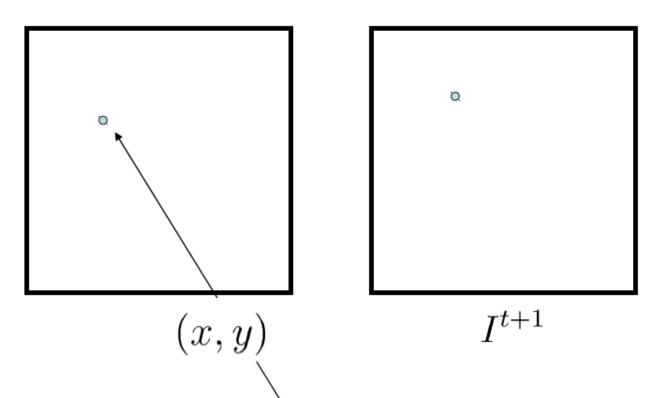
Hamburg Taxi seq



Basic Setup



Basic Question



Where did this point move to in the next image?

Basic Assumption

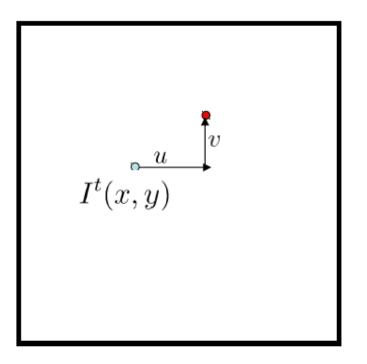


Image Brightness Constancy Equation:

$$I(x, y, t) = I(x + \Delta x, y + \Delta y, t + \Delta t)$$

Assumes that the scene doesn't change intensity

Understanding the assumption

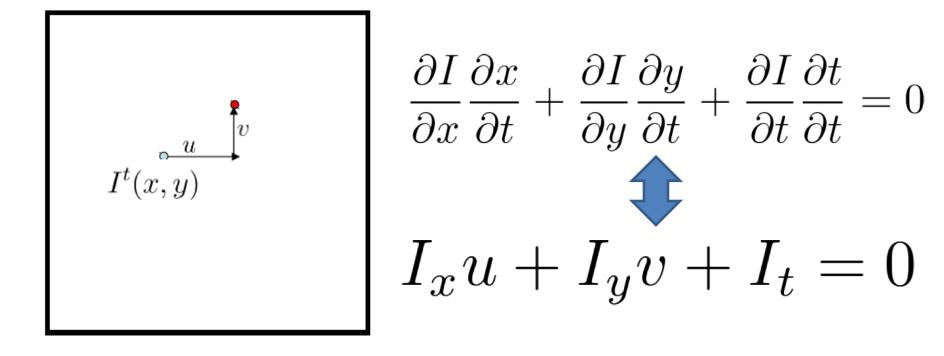
$$I(x, y, t) \approx I(x_{t_0}, y_{t_0}, t_{t_0}) + \frac{\partial I}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial I}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial I}{\partial t} \frac{\partial t}{\partial t}$$

Again, if we assume that the intensity of the scene doesn't change, then

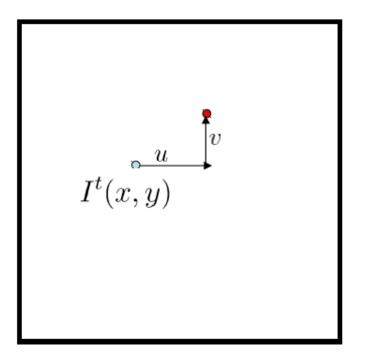
$$\begin{aligned} I(x, y, t) &= I(x_{t_0}, y_{t_0}, t_{t_0}) \\ \frac{\partial I}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial I}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial I}{\partial t} \frac{\partial t}{\partial t} = 0 \end{aligned}$$

Extended reading: Taylor expansion

Understanding the assumption



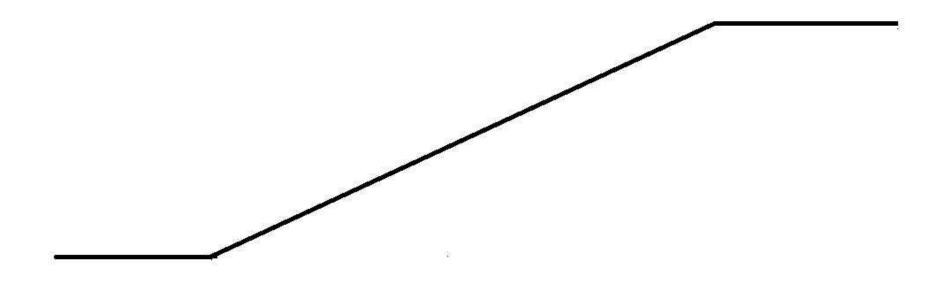
What's Next: Another way of deriving the equation



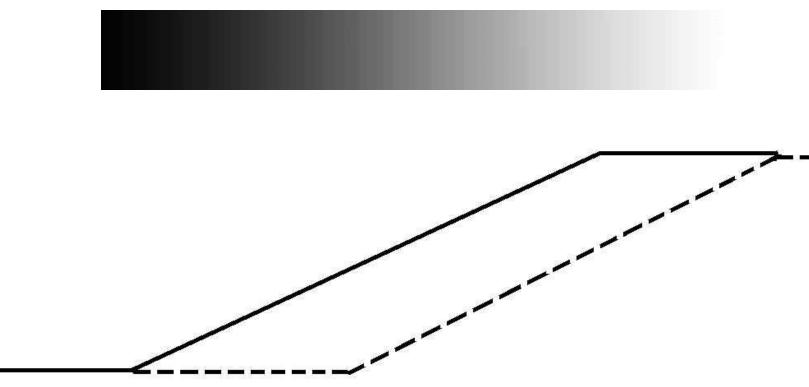
 $I_x u + I_y v + I_t = 0$

Imagine there is this (ramp) pattern of Intensity (image brightness) being viewed from above.

The ramp's pattern of brightness (Intensity Profile) can be viewed as a plot.

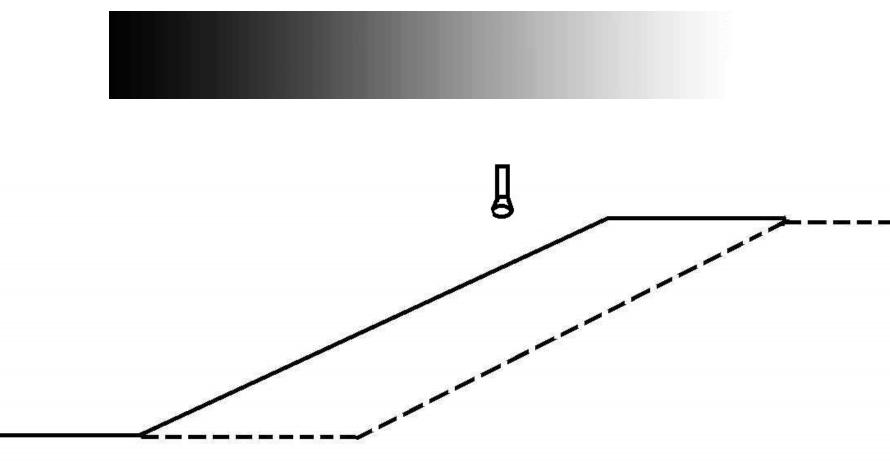


Now, Suppose the pattern moves to the right.

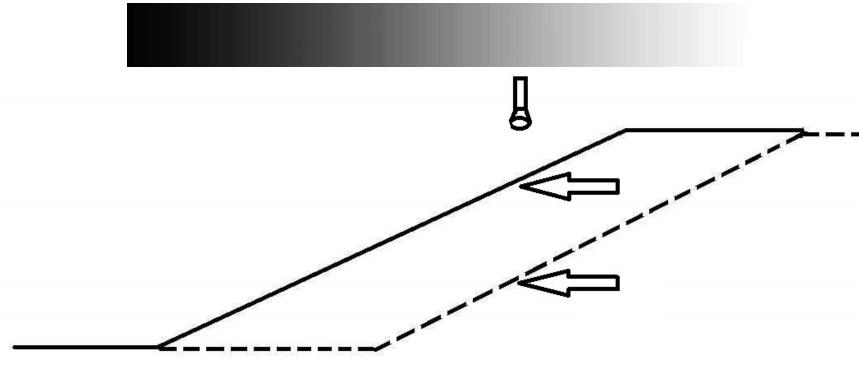


Dotted line shows where pattern has moved to, within unit time.

Now, Suppose a Single Pixel Camera saw this

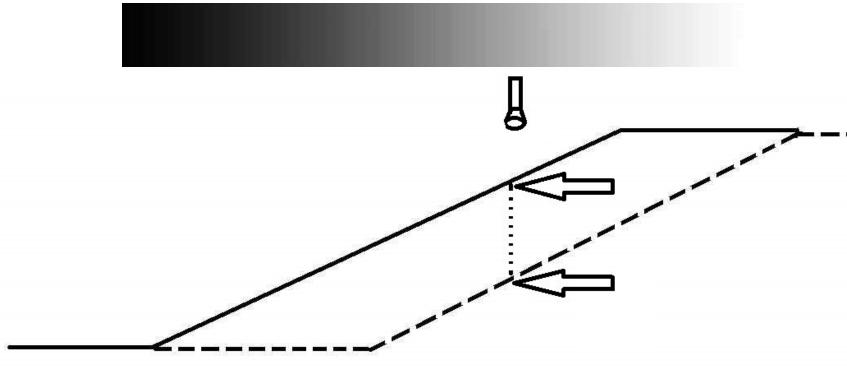


The Sensor would see the brightness change



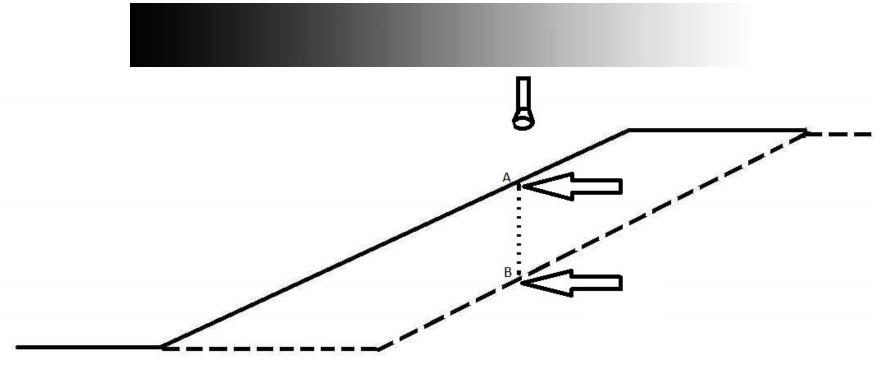
The 2 arrows show what two brightnesses the detector sees

The Sensor would see the brightness change



The Dotted segment shows the amount of brightness drop.

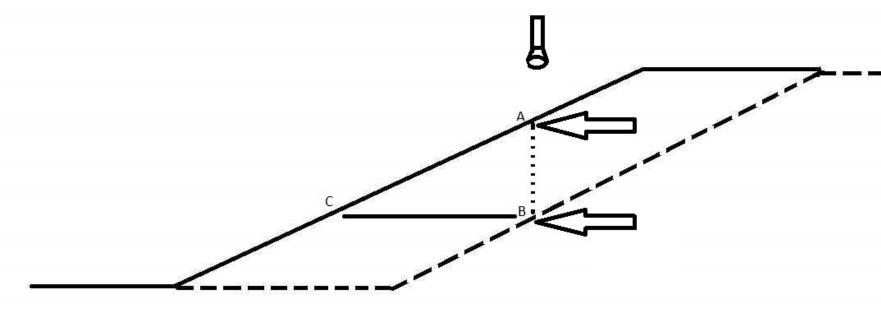
The Sensor would see the brightness change



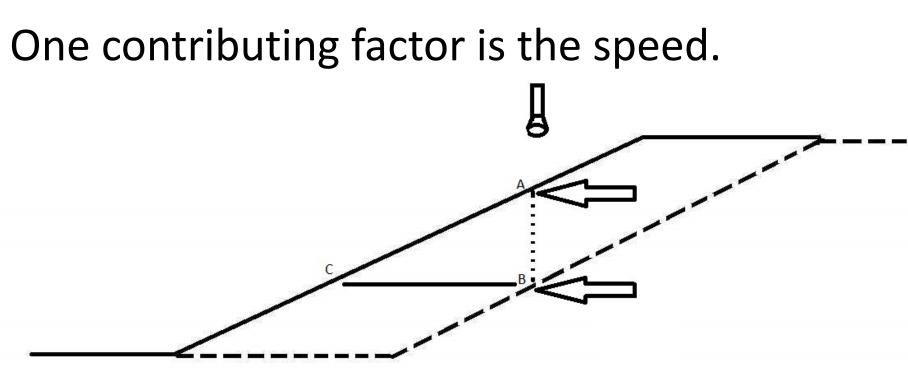
The brightness drop is given by the distance between A and B.

What physical properties of this situation will determine how much brightness drop happens?

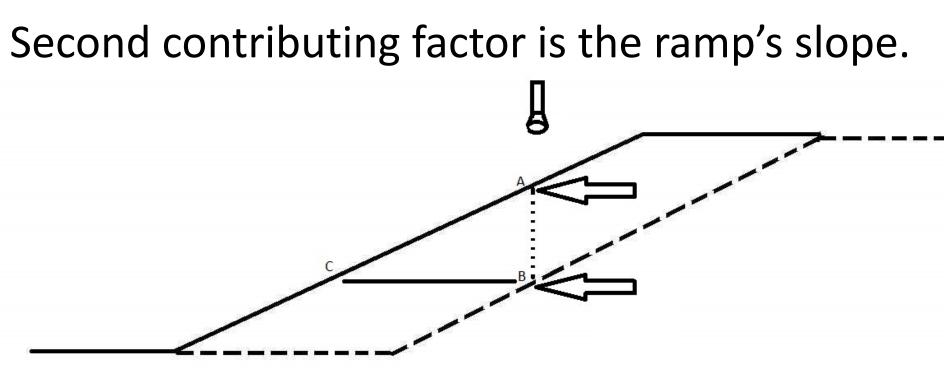
One factor contributing to the quantity of the brightness drop, is the speed.



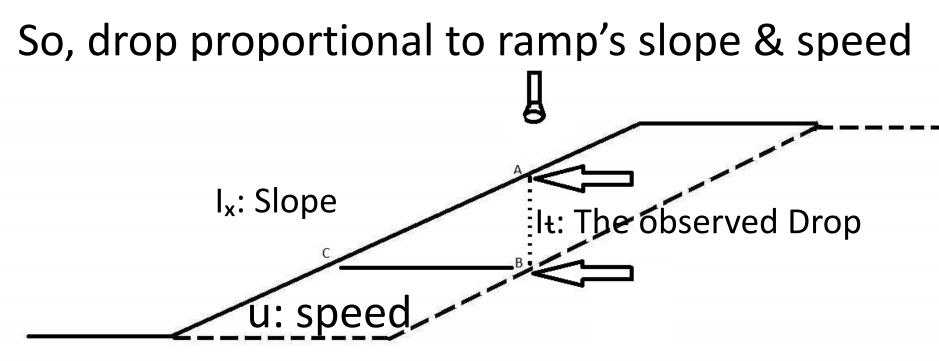
Speed is given by the lowermost dashed segment, which is the same as the length of the segment CB.



Make sure you understand that the faster speed will give a bigger drop, while slower speed will give smaller drop.



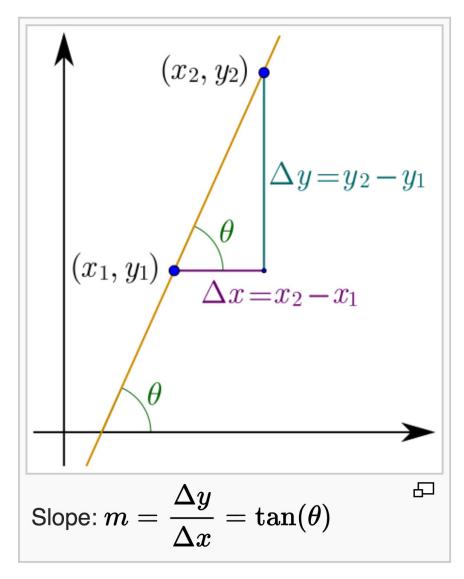
Make sure you understand that the steeper slope will give a bigger drop, while shallower slope will give a smaller drop.



Let us give symbols to these quantities, so we can work them.

The ramp itself is labeled I(x), for image or intensity function, varying along x. Speed is labeled u. Drop is labeled I_t. Slope is labeled I_x.

Describe slope in math



So, drop proportional to ramp's slope & speed

So,
$$-It = u \cdot I_x$$

Now, we need to derive a similar equation for the vertical direction.

So, similar reasoning: Suppose the region has variation only in the y-direction (not shown here, the original pattern is shown, you must imagine the new pattern); suppose that the motion is in the vertical direction (called v, now), suppose there is a single pixel sensor (camera) placed over the center of the pattern.

Then, by similar reasoning as before, we get that: $-|t_{\gamma} = V \cdot |_{\gamma}$

We had written I_t earlier, when we only had one dimension to play in. Now, to keep things separate, we say $I_{t_{\gamma}}$, by which we mean the drop seen by the sensor, but only that portion of the drop that is due to vertical aspects of this problem (in the original equation, to describe the horizontal behavior, we will now be using I_{t_x} .) In the new equation here, the meaning of I_{γ} should be obvious, it is the vertical component of the image gradient.

In practice, the motion could be along both x and y. So, sum the "drops",

 $(-|t_x) + (-|t_\gamma) = u \cdot |_x + v \cdot |_\gamma$

The terms on the Left are to be combined into one term It.

 $-\mathbf{It} = \mathbf{u} \cdot \mathbf{I}_{\mathbf{x}} + \mathbf{v} \cdot \mathbf{I}_{\mathbf{v}}$

This is a famous equation in the field of Computer Vision, and it has several names:

- 1) 2d motion Equation
- 2) Image motion Equation
- 3) Optical Flow Equation (this term is from perceptual psychology)

Comparing with the first way of deriving the optical flow equation

$$I(x, y, t) \approx I(x_{t_0}, y_{t_0}, t_{t_0}) + \frac{\partial I}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial I}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial I}{\partial t} \frac{\partial t}{\partial t}$$

Again, if we assume that the intensity of the scene doesn't change, then

$$I(x, y, t) = I(x_{t_0}, y_{t_0}, t_{t_0})$$

$$\frac{\partial I}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial I}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial I}{\partial t} \frac{\partial t}{\partial t} = 0$$

$$I_x u + I_y v + I_t = 0$$

The brightness constancy constraint

Can we use this equation to recover image motion (u,v) at each pixel?

 $\nabla \mathbf{I} \cdot \begin{bmatrix} \mathbf{u} & \mathbf{v} \end{bmatrix}^{\mathrm{T}} + \mathbf{I}_{\mathrm{t}} = \mathbf{0}$

• How many equations and unknowns per pixel?

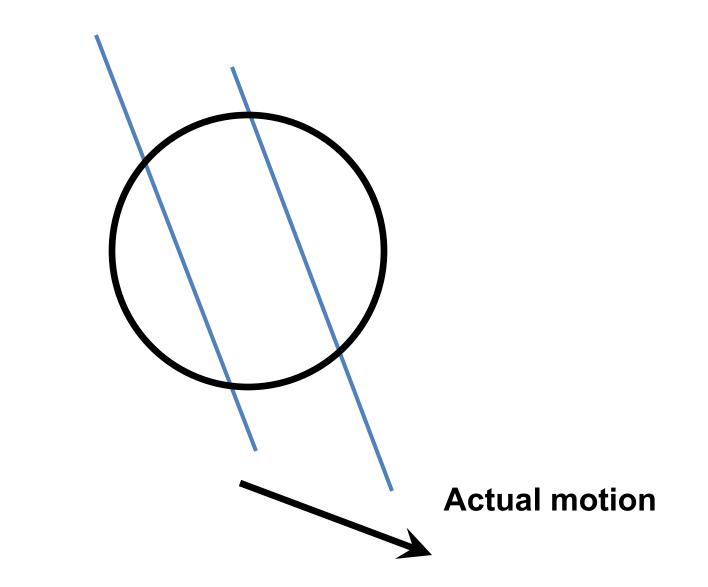
•One equation (this is a scalar equation!), two unknowns (u,v)

(u,v)

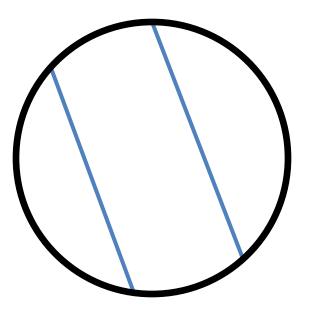
The component of the motion perpendicular to the gradient (i.e., parallel to the edge) cannot be measured

If (u, v) satisfies the equation, so does (u+u', v+v') if $\nabla I \cdot [u' v']^T = 0$ (u', v') (u+u)

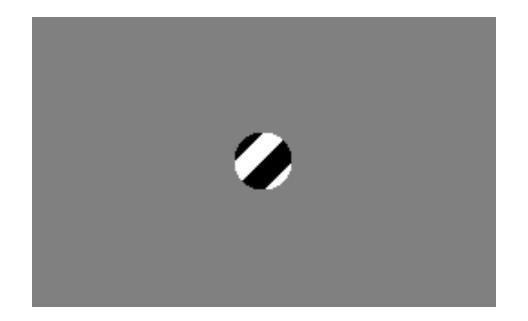
The aperture problem



The aperture problem



The barber pole illusion



http://en.wikipedia.org/wiki/Barberpole_illusion

The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

Solving the ambiguity...

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In *Proceedings of th International Joint Conference on Artificial Intelligence*, pp. 674–679, 1981.

- How to get more equations for a pixel?
- Spatial coherence constraint
- Assume the pixel's neighbors have the same (u,v)

If we use a 5x5 window, that gives us 25 equations per pixel

$$0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$$

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

Solving the ambiguity...

• Least squares problem:

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

$$A \quad d = b$$

25x2 2x1 25x1

Matching patches across images

• Overconstrained linear system

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix} A = b$$

$$25 \times 2 = 2 \times 1 = 25 \times 1$$

Least squares solution for d given by $(A^T A) d = A^T b$

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad \qquad A^T b$$

The summations are over all pixels in the K x K window

Conditions for solvability Optimal (u, v) satisfies Lucas-Kanade equation $\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$ $A^T A \qquad A^T b$

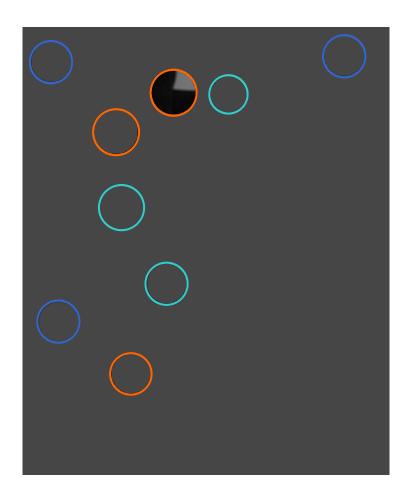
When is this solvable? I.e., what are good points to track?

- **A^TA** should be invertible
- **A^TA** should not be too small due to noise
 - eigenvalues λ_1 and λ_2 of $\textbf{A^T}\textbf{A}$ should not be too small
- **A^TA** should be well-conditioned
 - λ_1 / λ_2 should not be too large (λ_1 = larger eigenvalue)

Does this remind you of anything?

Criteria for Harris corner detector

Aperture problem

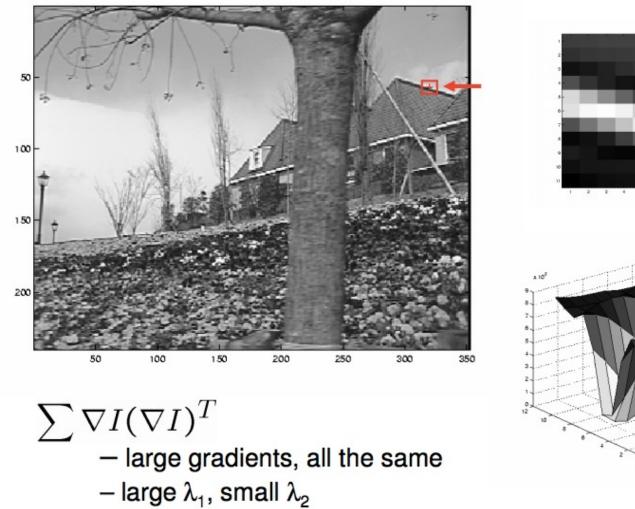


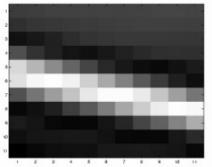
Corners

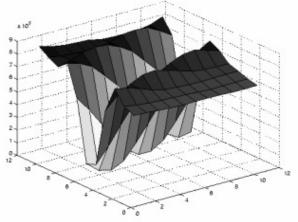
Lines

Flat regions

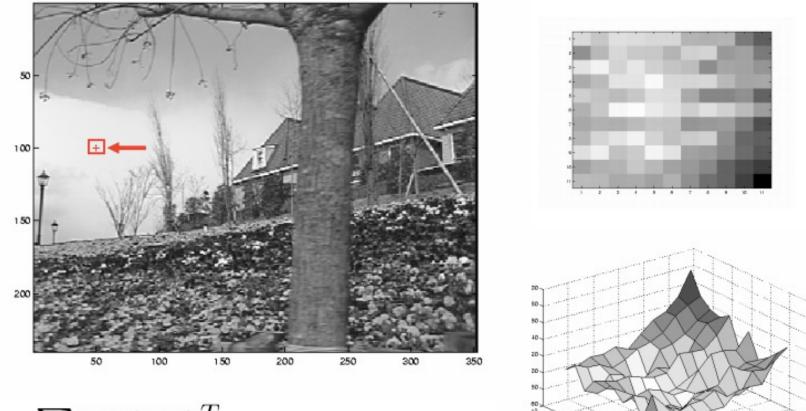
Edge





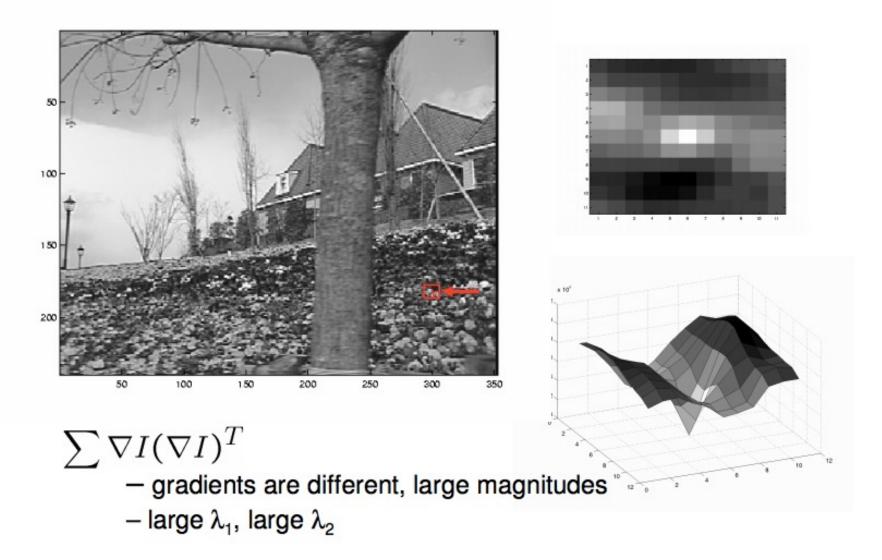


Low Texture Region



- $\sum \nabla I (\nabla I)^T \\ \text{gradients have small magnitude}$
 - small λ_1 , small λ_2

High Texture Region



Errors in Lukas-Kanade

- What are the potential causes of errors in this procedure?
 - Suppose A^TA is easily invertible
 - Suppose there is not much noise in the image

When our assumptions are violated

- Brightness constancy is **not** satisfied
- The motion is **not** small
- A point does **not** move like its neighbors
 - window size is too large
 - what is the ideal window size?

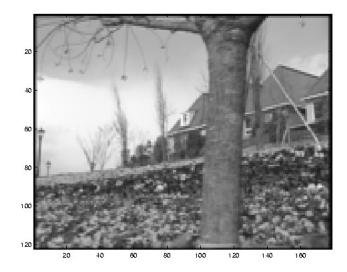
Dealing with larger movements: Iterative refinement Original (x,y) position

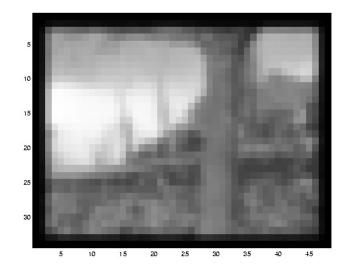
- Initialize (x',y') = (x,y)1.
- $I_t = I(x', y', t+1) I(x, y, t)$ 2. Compute (u,v) by $\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v_{\mathsf{N}} \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$ 2nd moment matrix for feature displacement patch in first image
- Shift window by (u, v): x' = x' + u; y' = y' + v;3.
- Recalculate I_t 4.
- 5. Repeat steps 2-4 until small change
 - Use interpolation for subpixel values

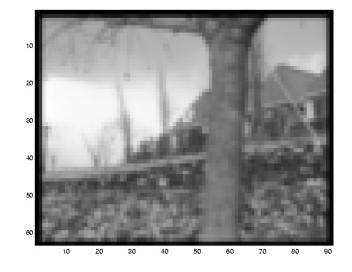
Revisiting the small motion assumption

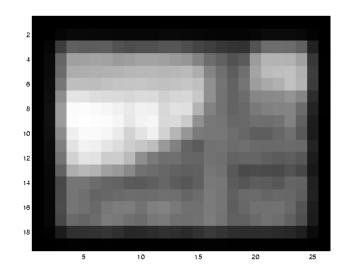
- Is this motion small enough?
 - Probably not—it's much larger than one pixel (2nd order terms dominate)
 - How might we solve this problem?

Reduce the resolution!

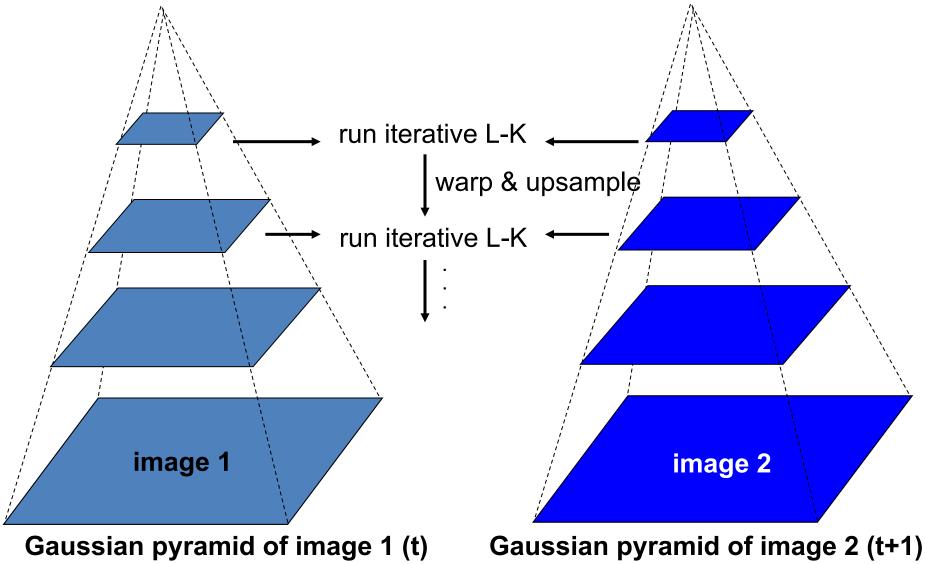








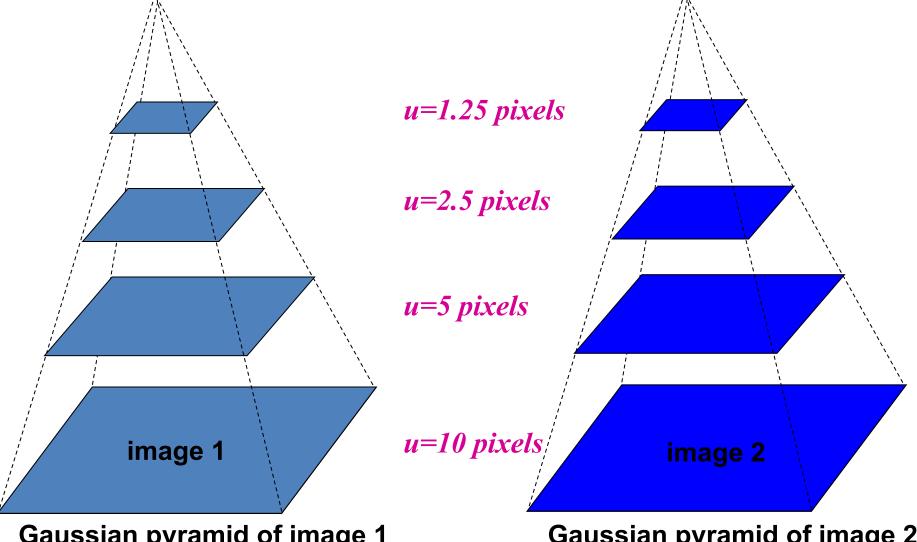
Coarse-to-fine optical flow estimation



A Few Details

- Top Level
 - Apply L-K to get a flow field representing the flow from the first frame to the second frame.
 - Apply this flow field to warp the first frame toward the second frame.
 - Rerun L-K on the new warped image to get a flow field from it to the second frame.
 - Repeat till convergence.
- Next Level
 - Upsample the flow field to the next level as the first guess of the flow at that level.
 - Apply this flow field to warp the first frame toward the second frame.
 - Rerun L-K and warping till convergence as above.
- Etc.

Coarse-to-fine optical flow estimation



Gaussian pyramid of image 1

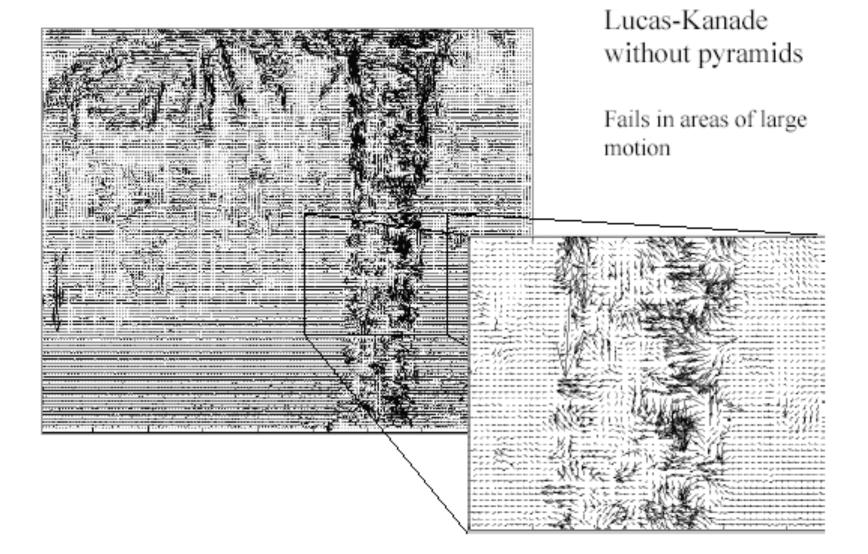
Gaussian pyramid of image 2

The Flower Garden Video

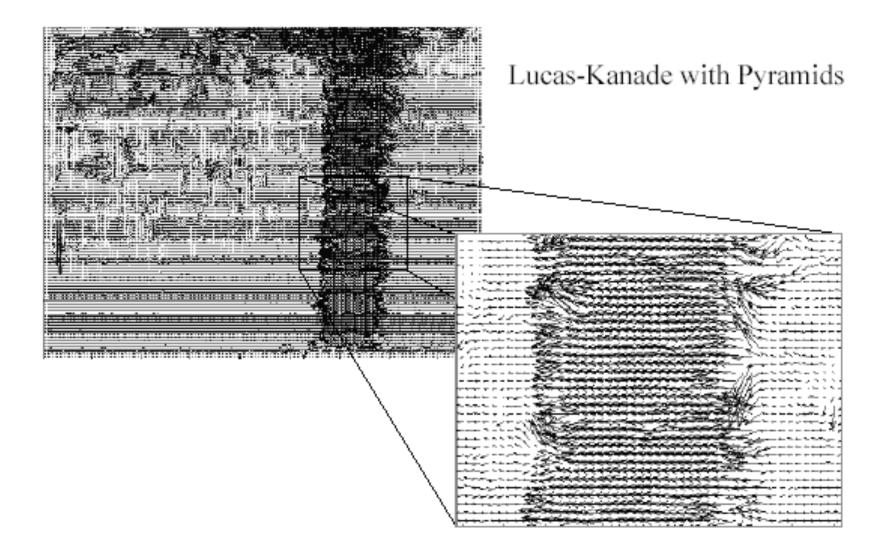
What should the optical flow be?

	_																																		
	-	*	-	**	-	-	-	**	•••	-	-	-	**	-	***	-	-	-		***			-		-	*	-		1	1	+	-	**	1	
	-	-	-			•••	••	••	•••	-	-	-	-	**	-	-	-	-							-	-	*	~	~	~	+-	•••	•••	1	1
		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-					_	-	-	-	-		-	-	•		
	1	_	_	_				_		_	1					-		_							<u> </u>	۰.									
										2	1	1	1	2	2			τ.		-															
		•	*	*	•			-	-				-	•	-		-	-											1	1			1	1	
	*	•	+	+	-	*	-		-	+	+	1	1	-	1	1		1	1	17	~		-	-	*	17			1	. 7	1				1
	~	*	-	~	-	-	•	-	~	~	+-	-	1	-	- 7	- 7	- 1			- *	-			-	-	-	-	-	-	- 7	-	-	-	-	
	-		-	~	~	~	~	~	~	~	-	-	-	-	-	-	-	-	-	-	- 4		-	-	-	-	-	-	-		-	-	-	-	
			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-					_	-	-	-	-			-	-	-	
								1	1																_										
		1	- 1	- 1				1									- 1	- 1									-	1	1	1	1				1
	-	1	. 7	. 7	. 7	. 7	1			. 7	. 7	-	. 1	1	. 7	. 7	- 7	- 7	1	. 1	-	-	-	-	. *	. 7		. *	17	17	17	17	- 7	- 7	1
	~	2	- 7	- 7	- 7	- 7	- 7	- 2	- 2	1	- 7	- 7	. *	- 1	- 1	- 2	- 2	- 2	. *				-	-		. 7	-	-	-	. 7	-	-	-	-	
	~	-	~	~	~	~	~		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
	~		-	-	-	-	-					-	1	1	-	1	1	-		-	-			-	-	-	-	-	-	-	-	-	-	-	-
			1						1																_	2	2								
																																			1
		1						-																÷.						-		-		-	1
	~	1	- 7	1		- 7	-	-	-	1	1	1	1	- 7	-		. *	. *		1		-	-	-	. *	1	1	1	-	-	-	-	-	-	1
	~	~	~	~	-	~	-	~	~	~	~	~	-	-	-	-	-	-	~	~	-	-	-	*	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	~	~	~	~	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	+	-	+	+	÷	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-	+	+	+	-	-	-	-	-	-	-
	~		2	-	-	-	-	-	-	-		2			-			-			_					-	-	-	-	-	-	-	-	-	
· · · · · · · · · · · · · · · · · · ·														1		1	1	1	1			2	1	2		1		-	-		_	_	_	_	
	-	-	-	-	-	-	-	-				÷	1	-	-		1	-	-					1		-	-	-	-	-	Ξ.	Ξ.	Τ.	-	-
	-	+	-	+	+	-	+	*	*	*	+	+	+	+	-	-	*	+	-	-	-	-	1	*	*	+	+	*	1	+	-	-	-	-	-

Optical Flow Results



Optical Flow Results



From 1D correspondence (stereo) to 2D correspondence problems (motion) color-consistency

 $p \in G$

Horn-Schunck 1981 optical flow regularization

- 2nd order optimization (pseudo Newton) - Rox/Cox/Ishikawa's method only works for scalar-valued variables

 $(I_p^t - I_{p+v_p}^{t+1})^2$

SOCIETY OF ROBOTS

regularity $\sum D_p(v_p) + \sum V(v_p, v_q)$ $\{p,q\} \in N$

 $\|v \cdot \|v_p - v_q\|^2$

optical flow $\mathbf{v} = \{v_n\}$

more difficult problem need 2D shift vectors V_D (no epipolar line constraint)

if 3D scene is NOT stationary motion is vector field with **arbitrary** directions (no epipolar line constraints)

Horn-Schunck Optical Flow (1981)

brightness constancy

small motion

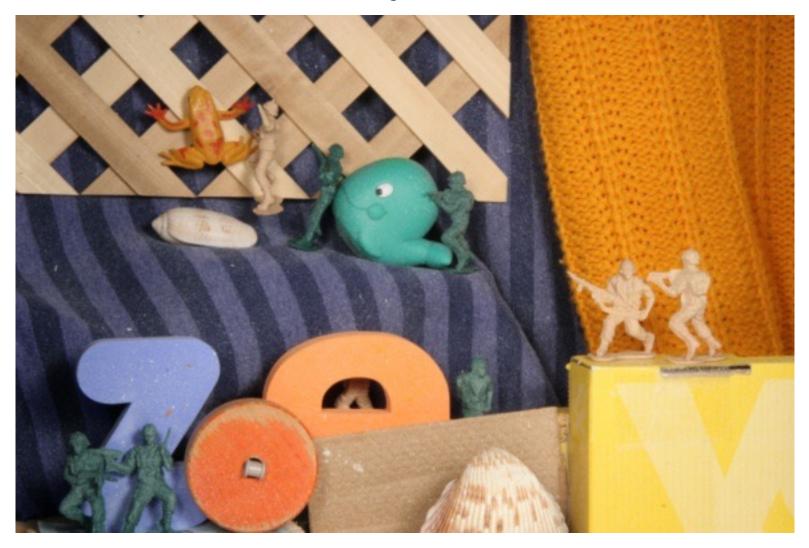
Lucas-Kanade Optical Flow (1981)

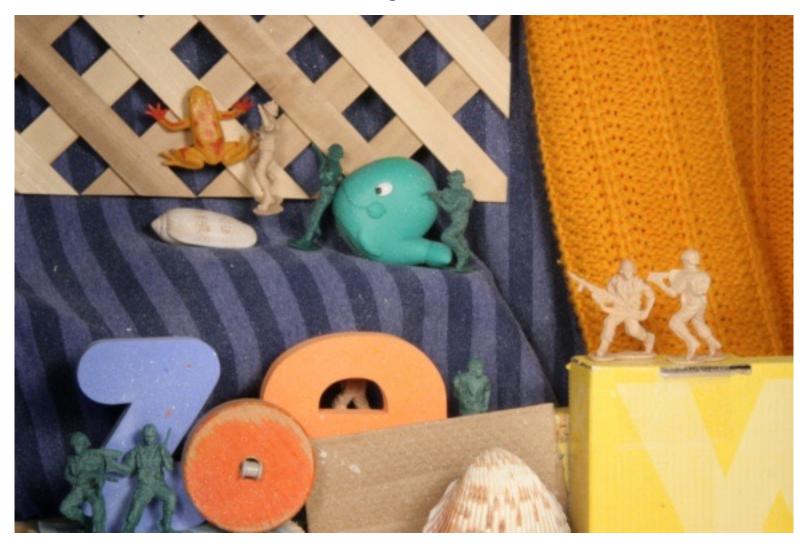
method of differences

'constant' flow

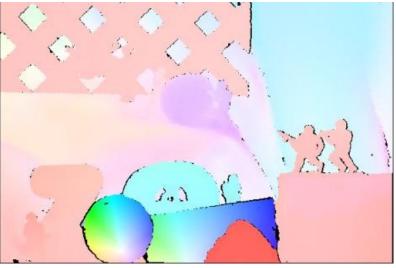
(flow is constant for all pixels)

local method

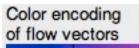




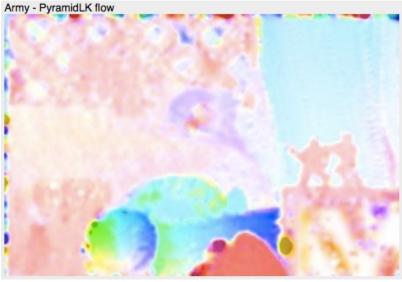
- Middlebury flow page
 - <u>http://vision.middlebury.edu/flow/</u>



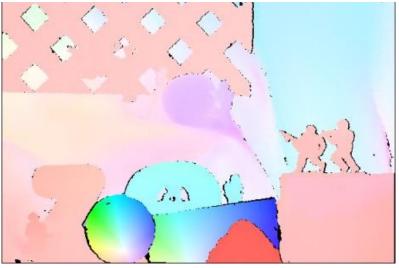
Ground Truth



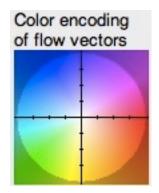
- Middlebury flow page
 - <u>http://vision.middlebury.edu/flow/</u>



Lucas-Kanade flow

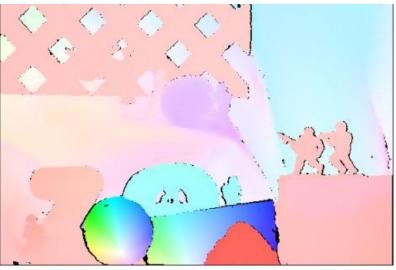


Ground Truth



- Middlebury flow page
 - <u>http://vision.middlebury.edu/flow/</u>

Best-in-class alg



Ground Truth

