
Multi-View Geometry

Slides from Yuri Boykov…with materials from H&Z and Carl Olsson



Motivation: triangulation gives depth

Human performance: up to 6-8 feet



Motivation: reconstruction problems

Multi-view reconstruction: shape from two or more images

to “triangulate”
should estimate

camera
viewpoints

need to learn about
multi-camera geometry



Summary:
• Projective Camera Model

• intrinsic and extrinsic parameters
• projection matrix (a.k.a. camera matrix) 
• camera calibration (from known 3D points)

• resection problem
• estimating intrinsic/extrinsic parameters

• Two cameras   (epipolar geometry)
• essential and fundamental matrices: E and F
• estimating  E (from matched features)
• computing projection matrices from E

• Structure-from-Motion (SfM) problem  - quick overview
• estimating “motion”:   camera positions (projection matrices)
• estimating “structure”:   scene points in 3D space

at the same 
time

(both are unknown)



Additional readings:

- Hartley and Zisserman “Multiple View Geometry”
Cambridge University Press, Ed.2

- Heyden and Pollefeys “Multiple View Geometry” 
short course at CVPR 2001

https://inf.ethz.ch/personal/marc.pollefeys/pubs/HeydenPollefeysCVPR01.pdf

https://inf.ethz.ch/personal/marc.pollefeys/pubs/HeydenPollefeysCVPR01.pdf


Towards projective camera model

First, if there is only one camera, can use a 
camera-centered 3D coordinate system (x,y,z):

- optical center is point (0,0,0)
- x and y axis are parallel to the image plane
- x and y axis parallel to u and v axis of the image coordinate system
- optical axis (z) intersects image plane at image point  c = (0,0) 
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as seen in lecture 2



Camera-centered coordinate system
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u       v
image-based coordinates
of the projection point

- optical center is point (0,0,0)
- x and y axis are parallel to the image plane
- x and y axis parallel to u and v axis of the image coordinate system
- optical axis (z) intersects image plane at image point  c = (0,0) 

For simplicity, 
illustration below assumes

world point (x,y,z) 
is inside x-z plane

),,( zyx(u,v)

v

as seen in lecture 2



Camera-centered coordinate system
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In general, image coordinate center 
can be anywhere (often in image corner).

Thus, optical axis may intersect image plane
at a point with image coordinates c=(uc ,vc)

contributing additional shift



Camera-centered coordinate system

K
matrix of intrinsic 
camera parameters

u               v
image-based coordinates
of the projection point

using homogeneous representation 
for image points

camera centered coordinates 
for 3D world points

camera projection
can be represented as

matrix multiplication

NOTE:  w = z  (depth)



Camera-centered coordinate system

K
matrix of intrinsic 
camera parameters

camera centered coordinates 
for 3D world points

Generally, anisotropic or skewed pixels result in

- different fx and  fy
- skew coefficient  s an anisotropic

and skewed 
pixel

using homogeneous representation 
for image points s - skew/tilt

- aspect ratio



Camera-centered coordinate system

K
matrix of intrinsic 
camera parameters

camera centered coordinates 
for 3D world points

In general, matrix K of intrinsic camera parameters  
is 3x3 upper triangular. It has 5 degrees of freedom. 
For square pixels, K has 3 d.o.f.

using homogeneous representation 
for image points

NOTE: here matrix K
maps  R3 to  R2 (P2) 

(not a homography P2 → P2)

Correction: Tue. Oct. 5



What if there are more than one camera?

scene point

Image 1

Projecting 3D scene onto images with different view-points

Only one camera can serve for world coordinate system.
Other cameras will have their camera-centered 3D coordinates 

different from the world coordinate system.

C1 C2

Image 2



Camera projection matrix

In case of two or more cameras, 3D world coordinate system 
maybe different from a camera-based coordinate system: 

• T  is a (translation) vector defining relative position of camera’s center
• orientation of x,y,z-axis of the camera-based coordinate system can be  
related to the axis of the world coordinate system via rotation matrix  R
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Camera projection matrix
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Converting world coordinates of a point 
into camera-based 3D coordinate system

camera-based
3D coordinates 

world
3D coordinates 

T

3x4 4x13x1
we get a linear transformation (matrix multiplication)

using  homogeneous representation for 
3D points in world coordinate system

(here vector T is world’s center in camera’s coordinates)



Camera projection matrix

Remember, projecting to 2D image coordinates…
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projection matrix  P

Camera projection matrix
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Homogeneous coordinates in 2D and 3D
Trick of adding one more coordinate

- translation becomes matrix multiplication
- 2D points become 3D rays

homogeneous 2D image 
coordinates

homogeneous 3D scene 
coordinates

Converting from homogeneous coordinates
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Goal: estimate intrinsic camera parameters 
- focal length f, image center (uc,vc), other elements of matrix K
- if needed, corrections for lens distortions (radial distortion in fish eye lenses)

Motivation:
• if K is known, only 6 d.o.f remains in projection matrix  P = K× (R|T)   

(3 d.o.f. for each rotation R and translation T )
=>     it becomes easier to estimate projection matrices 
corresponding to different viewpoints as camera(s) move around

not represented by K

Camera calibration

• using calibrated camera(s) is a way to remove projective ambiguity
in structure from motion 3D reconstruction   (more later) 



Camera calibration

assume a set of 3D points
with known world coordinates

Basic calibration technique:

X

Y

Z

calibration pattern
and tied 3D coordinates

and a set of matching image points

image

- find camera matrix P from known matches
(resection problem)

- then, find intrinsic and extrinsic parameters
(use matrix factorization)



Camera calibration

assume a set of 3D points
with known world coordinates

- find camera matrix P from known matches
(resection problem)

- then, find intrinsic and extrinsic parameters
(use matrix factorization)

Basic calibration technique:

X

Y

Z

calibration rig
(Tsai grid)

and a set of matching image points

image

NOTE: should not use 3D points             
on a single plane

(“degenerate configurations”, see H&Z Sec 7.1)



Camera projection matrix   (estimating from              )

estimate unknown 
projection matrix  P

Image 1
world 

coordinate 
system

3D world 
point

p~
X~

Q:  How many matched pairs 

are needed ?

P has 12 entries, 11 d.o.f.

A:  5.5  J

Q: Solving for  a,b,…,k,l ?
A: similar to estimating 

homographies
(see Topic 3, or H&Z p.179)

X

Y

Z

(resection problem)

u

v



Camera projection matrix   (estimating from              )

world 
coordinate 

system

3D world 
point

p~
X~

• Use more than 6 matched pairs

to compensate for errors
(homogeneous least squares)

Image 1 X

Y

Z

estimate unknown 
projection matrix  P

(resection problem)

u

v



Extracting intrinsic parameters from P

Now, assume that 3x4  projection matrix P is already estimated

How can we get  K (as well as R,T) from  P ?

known
unknown

3x3 3x4



Extracting intrinsic parameters from P

H&Z  Sec 6.2.4  (p. 163)  matrix factorization:
Theorem [QR or RQ factorization]: for any n´n matrix A there is an orthogonal 
matrix Q and an upper (or right) triangular matrix R such that A = RQ.

?

A a
R TK

scale R to make 
bottom right 
element equal 1 



rotation and translation only 

Calibrated Camera   (camera normalization)

Once intrinsic parameters  K are known

- can “normalize” the camera:  
switch to a new image coordinate system defined as

- then, camera’s new projection matrix  P becomes ~

Q: what kind of transform
is this for camera’s image? 



Calibrated (Normalized) Camera

After normalization, “effective” intrinsic 
parameters form an identity matrix 

extrinsic 
parameters

Geometric interpretation:

focal length  f  = 1
point (0,0)  =  intersection of 
image plane with optical axis 
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Calibrated (Normalized) Camera

To project onto a calibrated camera (a.k.a. normalized camera) one 
needs only its position (translation+rotation) in world coordinates

calibrated/normalized camera’s projection matrix
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still 3x4 matrix
but only 6 d.o.f
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Calibrated (Normalized) Camera

To project onto a calibrated camera (a.k.a. normalized camera) one 
needs only its position (translation+rotation) in world coordinates

calibrated/normalized camera’s projection matrix
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coordinate 

system
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v

(0,0)1

The main point of 
calibration/normalization:

converts any camera to a 
“standardized” pin hole camera
model shown on the left. After 

calibration, images are independent of 
how the camera is made and depend 

only on camera’s location/orientation.

still 3x4 matrix
but only 6 d.o.f

normalized image 
embedded in R3

~

~

NOTE: in general, “calibration” process also 
correct for lens distortions (barrel, etc.)



Calibrated (Normalized) Camera

To project onto a calibrated camera (a.k.a. normalized camera) one 
needs only its position (translation+rotation) in world coordinates

calibrated/normalized camera’s projection matrix

C
x

y

zcamera-centered
coordinate 

system

u

v

(0,0)1

Estimating multiple viewpoints Pn
is the “motion” part of the 

structure-from-motion problem

still 3x4 matrix
but only 6 d.o.f

normalized image 
embedded in R3

~

~
NOTE: camera calibration uses known 3D points          . 

The “structure” part of SfM problem estimates 
unknown 3D scene points           .

(later in this topic)



Calibrated (Normalized) Camera

For simplicity, the rest of this topic assumes 
that all images are normalized (calibrated cameras)

unless explicitly stated otherwise



Two cameras geometry

Epipolar geometry

essential & fundamental matrices

Motivation: helps reconstruction



Stereo reconstruction

Triangulation: can reconstruct a point as an intersection of two rays, assuming…

- known projection matrix (camera position) 
- known point correspondence

From 2D images back to 3D scene

C1 C2

p1 p2



Epipolar lines
• Find pairs of corresponding pixels (that come from the same 3D scene point)

– not trivial (remember mosaicing)

C1 C2

?
p2

Question: does any ray 
from C1 intersects ray C2 p2 ?    

left image epipole
(point where C2 projects onto left image plane)

“baseline”

a plane

unknown 3D scene 
point

epipolar line 
in the left image

for point p2

e1
corresponding point 
must be on this line

Any right image point p2 corresponds to some left image epipolar line. 

It is a projection of ray C2 → p2 (ray C2 → unknown 3D scene point).



Epipolar lines

right camera imageleft camera image
(contains the right camera)

epipole

Example [from Carl Olsson] 
(two stationary cameras)

corresponding 
points

consider some features 
in the right image

(projections of some 3D points)

Any right image point p2 corresponds to some left image epipolar line. 

projection of 
right camera center C2

onto left image

corresponding 
epipolar

lines

It is a projection of ray C2 → p2 (ray C2 → unknown 3D scene point).



Epipolar lines
Similarly, for any given point p1 in the left image…

epipolar constraint for the right image:  for any point  p1 in the left 
image, the corresponding point in the right image must be on the line 
where plane p1 C1 C2 intersects the right image (right image epipolar line)

- reduces correspondence problem to 1D search along conjugate epipolar lines

C1 C2

?p1

epipoles
(points where base line C1 C2 intersects two image planes)

e2e1

“baseline”

a plane
epipolar line 

in the right image
for point p1

corresponding point 
must be on this line

unkown 3D scene 
point



Epipolar lines

epipolar lines
epipolar lines

C1 C2

e1 e2

System of corresponding epipolar lines depends only on 
camera set up and it does not depend on 3D scene. 



Epipolar lines

epipolar lines
epipolar lines

C1 C2

e1 e2

• Intersection of epipolar planes  (planes containing base line C1C2 )  with 
image planes define a system of corresponding epipolar lines

• Corresponding points can be only on corresponding epipolar lines
- important to know such lines when searching for corresponding pairs of points

System of corresponding epipolar lines depends only on 
camera set up and it does not depend on 3D scene. 



Epipolar lines

epipolar lines
epipolar lines

C1 C2

e1 e2

• How can we compute epipolar lines for a given pair of images?

- but only relative position of two cameras really matters: 
can estimate a single 3x3 essential matrix rather than two 3x4 matrices P = (R|T) … 

- if known, camera projection matrices P1 and P2 contain all information

e1= P1 C2 e2= P2 C1 x1= P1 X        x2= P2 X      (X – any 3D point)



Essential matrix E (definition)

C1 C2

e1 e2

3x3 matrix

im
ag

e 
1 im

age 2

l1 l2

x2x1

for any pair of pixels/points x1 and x2

on the corresponding epipolar lines
(assuming calibrated cameras)

NOTE: given x1 in image 1 vector  l2 = Ex1 gives equation  x2·l2 = 0 (a line in image 2)
given x2 in image 2 vector  l1 = ETx2 gives equation  x1·l1 = 0  (a line in image 1)

The system of corresponding epipolar lines 
is fully described by a 3x3 matrix E in equation below 

l2(l1)T



Essential matrix E (proof of existence)

C1 C2

e1 e2

im
ag

e 
1 im

age 2

l1 l2

x2

co-planarity constraint for x1 and x2
treating x1 and x2 as vectors in R3

x1

Recall: assuming calibrated cameras, 
pixels x1 and x2 in (homogeneous) image coordinates 

can be treated as 3D points (vectors) in the 
corresponding camera-centered coordinates of 3D space

use camera 1 for
“world coordinates”

rotation R and translation T convert 
camera 1 (world) coordinates to camera 2

T

R

NOTE: Rx1 is vector x1 in camera 2 coordinates and T´Rx1 is the green plane’s normal (camera 2 coordinates)

cross productdot product

for any pair of pixels/points x1 and x2

on the corresponding epipolar lines
(assuming calibrated cameras)



co-planarity constraint for x1 and x2
treating x1 and x2 as vectors in R3

NOTE: cross product a´b can be represented as matrix multiplication

Essential matrix E (proof of existence)

cross productdot product

matrix expression

notation:

Q:   null space of  [a]x dimensions?     A: 0     B: 1 C: 2 D: 3

3x3 skew-symmetric matrix, rank 2
(a.k.a. antisymmetric matrix  M = -MT )



matrix expression

essential 
matrix 

E

Essential matrix E (proof of existence)

NOTE: due to homogeneous
coordinates, scale of E is arbitrary 



matrix expression

essential 
matrix 

E

Essential matrix E

Theorem [existence and uniqueness of essential matrix]: 
Assume two calibrated cameras with non-zero baseline.
There exists (unique up to scale) 3x3 matrix E such that  
for any 

where                       are projections of X on two cameras, 
i.e. for cameras' projection matrices P1 and P2.

NOTE: due to homogeneous
coordinates, scale of E is arbitrary 

Th. Oct 19



matrix expression

essential 
matrix 

EE is defined by a relative position 
of two cameras (R and T), as expected

Essential matrix E

Theorem [existence and uniqueness of essential matrix]: 
Assume two calibrated cameras with non-zero baseline.
There exists (unique up to scale) 3x3 matrix E such that  
for any 

where                       are projections of X on two cameras, 
i.e. for cameras' projection matrices P1 and P2.

Q: How many d.o.f in E ?

NOTE: due to homogeneous
coordinates, scale of E is arbitrary 

A:  5 = 3 (rotation) + 3-1 (scale of  T is arbitrary)

nontrivial exercise: prove up-to-scale uniqueness of E



matrix expression

essential 
matrix 

E

Essential matrix E

Q: What is the rank of  E ?

E is defined by a relative position 
of two cameras (R and T), as expected

Theorem [existence and uniqueness of essential matrix]: 
Assume two calibrated cameras with non-zero baseline.
There exists (unique up to scale) 3x3 matrix E such that  
for any 

where                       are projections of X on two cameras, 
i.e. for cameras' projection matrices P1 and P2.

NOTE: due to homogeneous
coordinates, scale of E is arbitrary 

nontrivial exercise: prove up-to-scale uniqueness of E



F

Fundamental matrix F

This assumes calibrated
camera coordinates Remember:

calibrated 
(normalized) 
coordinates 

original image
coordinates 

=>

defines epipolar lines for
uncalibrated cameras- fundamental matrix



Essential and Fundamental matrices 

• epipolar lines
(for two calibrated cameras)

• epipolar lines
(for two arbitrary cameras)

essential matrix E fundamental matrix F

• 5 d.o.f • 7 d.o.f

• rank 2 • rank 2

(6 from R&T, - scale of T)  (9 par., - scale & det F=0) 

• two equal non-zero 
singular values

• two non-zero 
singular values

• epipoles e1 and e2 are right 
and left null vectors for  E

• epipoles e1 and e2 are right 
and left null vectors for  F



What’s left to cover

• Estimation of E and F  

• simpler 8-point method (no explicit enforcement of rank or other constraints for E or F)

• more advanced 5-point method (see H&Z book, we do not cover this in class)

• similarly to homography estimation in previous topics, we cover only least 
squares for algebraic errors (reprojection errors use more advanced optimization) 

• Extraction of cameras (projection matrices) from E

• Structure from Motion

• match, find E, find cameras (estimate pose), triangulate (estimate structure)
• bundle adjustment
• reconstruction ambiguities



Estimating F or E from  N ≥ 8 matches

Assume corresponding points  in two images
(matched pair corresponding to a projection of unknown 3D point         )

They must lie on the corresponding epipolar lines, thus

If                                and                               then

One matching pair                    gives only one linear equation.
Eight is enough to determine elements of 3x3 matrix F  (as scale is arbitrary)

(use E for calibrated images)

8-point method

Note: enforcing known properties (e.g. rank=2) allows to use fewer points. 



Estimating F or E from  N ≥ 8 matches

In matrix form: one row for each of N ≥ 8 correspondences
Nx9 9x1 Nx1

If matched points
have some errors

(not exact locations) ?



Estimating F or E from  N ≥ 8 matches

solve homogeneous least squares

as in homography estimation, 
constraint ||f||=1  fixes the scale of  f (i.e. F)

Use eigen vector for the smallest eigen value of 9x9 matrix

for E use e
instead of f



Given essential matrix              

find rotation R and translation T such that 
mathematical formulation of the problem

im
ag

e 
1 im

age 2

C1 C2T

R

can choose camera 1 as
“world coordinates”

to estimate projection matrix for camera 2
need rotation R and translation T converting 
camera 1 (world) coordinates to camera 2

Now assume essential matrix E is given, need to find P1 and  P2

e1 e2

Extracting cameras from essential matrix E



Extracting cameras from essential matrix E

for any combination of
and                     (scale is arbitrary)

the last column of U
see [H&Z:sec 9.6.2, p.258]  for proof

Four distinct R,T solutions   
(up to scale)

Q: Why?

Assume SVD decomposition

such that det(UVT) = 1  (if det(UVT) = -1 switch the sign of the last column in V).

Then, using special matrix                            we have



Extracting cameras from essential matrix E
Four distinct R,T solutions   

(up to scale of T)

baseline length |T|
does not change

epipole or epipolar lines
in the images 

C1

e1 e2 e2
C2̀C2

for any combination of
and                     (scale is arbitrary)

the last column of U
see [H&Z:sec 9.6.2, p.258]  for proof

Q: Why?



Extracting cameras from essential matrix E
Four distinct R,T solutions   

(up to scale of T)

baseline length |T|
does not change

epipole or epipolar lines
in the images 

C1

e1 e2 e2
C2̀C2

for any combination of
and                     (scale is arbitrary)

the last column of U
see [H&Z:sec 9.6.2, p.258]  for proof

Q: Why?

same 
epipolar 
planes
same 

epipolar 
lines



Two given views of a chair

14 known correspondences (for 14 non-coplanar 3D points)

allow to estimate essential matrix E
assuming K is known 
(e.g. 8 point method)

Extracting cameras from essential matrix E

Example:
[from Carl Olsson]

A B

Four distinct R,T solutions   
(up to scale of T)



Extracting cameras from essential matrix E

- four distinct relative camera 
positions (motion R, T) 
computed from E (up to scale) 

A B

A
B

AB

A
B

Note: only one solution has positive “depths” for both cameras 

Example:
[from Carl Olsson]

baseline reversal  (T=±U3)
Four distinct R,T solutions   

(up to scale of T)

- 3D structure {Xi} computed from 
correspondences
by triangulation  (more soon...) 
up to a similarity transformation
(i.e. scale+position+orientation)

cam
era B

orientation flips



Extracting cameras from fundamental matrix F

One can also estimate camera projection matrices from 
fundamental matrix, but there are more ambiguities 

Examples
[from Carl Olsson]

3D reconstruction with
“projective” ambiguity

(cameras estimated from F)

3D reconstruction with
similarity transform ambiguity

(cameras estimated from E)

[see H&Z]



? →

Triangulation

X

C1 C2

x1 x2

Now, assume known projection matrices P1 , P2 and a match

6 equations with 5 unknown 

projection 
constraints

=>  4 equations with 3 unknown 
But, we do not care about w1 & w2 – eliminate them  (à la slide 15 topic 6)



Triangulation

C1 C2

x1 x2

One equation is redundant only if points x1, x2 are exactly on the
corresponding epipolar lines (the corresponding rays intersect in 3D).

Due to errors, use least squares.

Now, assume known projection matrices P1 , P2 and a match

projection 
constraints

X? →



Structure-from-Motion workflow
Basic sequential reconstruction

• For the first two images, use 8-point algorithm to estimate 
essential matrix E, cameras, and triangulate some points {Xi}.

• Each new view should see some previously reconstructed 
scene points {Xi} (“feature matches” with previous cameras). Use such 
points to estimate new camera position (resection problem). 

• Add new scene points using triangulation, e.g. for new “matches” 
with previously non-matched (and non-triangulated) features in earlier views.

• If there are more cameras, iterate previous two steps.

• Issues
• errors can accumulate
• new views are used only to add new 3D points, but they can help to 

improve accuracy for previously reconstructed scene



Structure-from-Motion workflow

“Bundle adjustment”

re-projection error

i-th “feature track”

set of images
where feature i

is visible

feature i
location 

in image k



Structure-from-Motion workflow

from Carl Olsson
https://www.youtube.com/watch?v=i7ierVkXYa8



Applications of multi-view geometry:

Pose estimation
Rigid motion segmentation 
Augmented reality
Special effects in video
Volumetric 3D reconstruction
Depth reconstruction (stereo-next topic)


