Multi-View Geometry

Slides from Yuri Boykov...with materials from H\&Z and Carl Olsson

Motivation: triangulation gives depth

Human performance: up to 6-8 feet

Motivation: reconstruction problems

Multi-view reconstruction: shape from two or more images

Summary:

- Projective Camera Model
- intrinsic and extrinsic parameters
- projection matrix (a.k.a. camera matrix)
- camera calibration (from known 3D points)
- resection problem
- estimating intrinsic/extrinsic parameters
- Two cameras (epipolar geometry)
- essential and fundamental matrices: E and F
- estimating E (from matched features)
- computing projection matrices from E
- Structure-from-Motion (SfM) problem - quick overview
at the same $[$ • estimating "motion": camera positions (projection matrices)
$\underset{\text { time }}{\text { time unkous) }}$ - estimating "structure": scene points in 3D space

Additional readings:

- Hartley and Zisserman "Multiple View Geometry" Cambridge University Press, Ed. 2
- Heyden and Pollefeys "Multiple View Geometry" short course at CVPR 2001
https://inf.ethz.ch/personal/marc.pollefeys/pubs/HeydenPollefeysCVPR01.pdf

Towards projective camera model

First, if there is only one camera, can use a camera-centered 3D coordinate system (x, y, z):

as seen in lecture 2

- optical center is point $(0,0,0)$
- x and y axis are parallel to the image plane
- $\quad x$ and y axis parallel to u and v axis of the image coordinate system
- optical axis (z) intersects image plane at image point $c=(0,0)$

Camera-centered coordinate system

For simplicity, illustration below assumes world point ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) is inside $x-z$ plane

- optical center is point $(0,0,0)$
- $\quad x$ and y axis are parallel to the image plane
- $\quad x$ and y axis parallel to u and v axis of the image coordinate system
- optical axis (z) intersects image plane at image point $c=(0,0)$

Camera-centered coordinate system

In general, image coordinate center can be anywhere (often in image corner).

Thus, optical axis may intersect image plane at a point with image coordinates $c=\left(u_{c}, v_{d}\right)$ contributing additional shift

Camera-centered coordinate system

camera projection can be represented as matrix multiplication
using homogeneous representation

image-based coordinates of the projection point

$$
\text { NOTE: } w=z \text { (depth) }
$$

matrix of intrinsic
camera centered coordinates for 3D world points camera parameters

Camera-centered coordinate system

Generally, anisotropic or skewed pixels result in

- different f_{x} and f_{y}
- skew coefficient s

using homogeneous representation

camera centered coordinates matrix of intrinsic camera parameters

Camera-centered coordinate system

In general, matrix K of intrinsic camera parameters is 3×3 upper triangular. It has 5 degrees of freedom. For square pixels, K has 3 d.o.f.
using homogeneous representation

What if there are more than one camera?

Projecting 3D scene onto images with different view-points

Only one camera can serve for world coordinate system. Other cameras will have their camera-centered 3D coordinates different from the world coordinate system.

Camera projection matrix

In case of two or more cameras, 3D world coordinate system maybe different from a camera-based coordinate system:

- T is a (translation) vector defining relative position of camera's center - orientation of x, y, z-axis of the camera-based coordinate system can be related to the axis of the world coordinate system via rotation matrix R

Camera projection matrix

Converting world coordinates of a point into camera-based 3D coordinate system

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=R \cdot\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]+T} \\
& \text { camera-based } \\
& \text { 3D coordinates } \\
& \text { world } \\
& \text { 3D coordinates }
\end{aligned}
$$

using homogeneous representation for 3D points in world coordinate system

we get a linear transformation (matrix multiplication)

Camera projection matrix

Camera projection matrix

Homogeneous coordinates in 2D and 3D

Trick of adding one more coordinate

- translation becomes matrix multiplication
- 2D points become 3D rays

$$
\begin{aligned}
\text { in } \mathbb{R}^{2}(u, v) \Rightarrow & {\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right] }
\end{aligned} \sim\left[\begin{array}{c}
w u \\
w v \\
w
\end{array}\right] \text { in } \mathrm{P}^{2}
$$

Converting from homogeneous coordinates

$$
\begin{aligned}
& {\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w)} \\
& \text { in } \mathbb{R}^{2}
\end{aligned} \begin{gathered}
{\left[\begin{array}{c}
X \\
Y \\
Z \\
w
\end{array}\right] \Rightarrow \begin{array}{c}
(X / w, Y / w, Z / w) \\
\text { in } \mathbb{R}^{3}
\end{array}} \\
\text { in } \mathrm{p}^{2}
\end{gathered}
$$

Camera calibration

Goal: estimate intrinsic camera parameters

- focal length f, image center (u_{c}, v_{c}), other elements of matrix \boldsymbol{K}
- if needed, corrections for lens distortions (radial distortion in fish eye lenses) not represented by K

Motivation:

- if K is known, only 6 d.o. f remains in projection matrix $P=K \cdot(R \mid T)$ (3 d.o.f. for each rotation R and translation T)
=> it becomes easier to estimate projection matrices corresponding to different viewpoints as camera(s) move around
- using calibrated camera(s) is a way to remove projective ambiguity in structure from motion 3D reconstruction (more later)

Camera calibration

Basic calibration technique:
assume a set of 3D points $\left\{\tilde{X}_{i}\right\}$ with known world coordinates and a set of matching image points $\left\{\tilde{p}_{i}\right\}$

calibration pattern and tied 3D coordinates

- find camera matrix P from known matches
$\tilde{X}_{i} \leftrightarrow \tilde{p}_{i}$
(resection problem)
- then, find intrinsic and extrinsic parameters (use matrix factorization)

Camera calibration

Basic calibration technique: assume a set of 3D points $\left\{\tilde{X}_{i}\right\}$ with known world coordinates and a set of matching image points $\left\{\tilde{p}_{i}\right\}$

image

NOTE: should not use 3D points $\left\{\tilde{X}_{i}\right\}$ on a single plane ("degenerate configurations", see H\&Z Sec 7.1) calibration rig
(Tsai grid)

- find camera matrix P from known matches $\quad \tilde{X}_{i} \leftrightarrow \tilde{p}_{i}$ (resection problem)
- then, find intrinsic and extrinsic parameters (use matrix factorization)

Camera projection matrix (estimating from $\left.\tilde{X}_{i} \leftrightarrow \tilde{p}_{i}\right)$

Camera projection matrix (estimating from $\left.\tilde{X}_{i} \leftrightarrow \tilde{p}_{i}\right)$

$$
\left[\begin{array}{c}
w u \\
w v \\
w
\end{array}\right]=\underset{\substack{\text { estimate unknown } \\
\text { projection matrix } P}}{\left[\begin{array}{cccc}
a & b & c & d \\
e & f & g & h \\
i & g & k & l
\end{array}\right]} \cdot\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- Use more than 6 matched pairs

$$
\tilde{X}_{i} \leftrightarrow \tilde{p}_{i}
$$

Extracting intrinsic parameters from P

Now, assume that 3 x 4 projection matrix P is already estimated

How can we get K (as well as R, T) from P ?

Extracting intrinsic parameters from P

$$
P=\left[\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & g & k & l
\end{array}\right] \stackrel{?}{=} K \cdot\left[\begin{array}{l|l}
\\
R & T \\
T
\end{array}\right]
$$

matrix factorization: $\quad н \& z \operatorname{Sec} 6.2 .4$ (p. 163)

Theorem [$\propto \Omega$ or $R \in$ factorization]: for any $n \times n$ matrix A there is an orthogonal matrix \otimes and an upper (or right) triangular matrix \mathfrak{R} such that $A=\mathcal{R} Q$.

Calibrated Camera (camera normalization)

Once intrinsic parameters K are known

- can "normalize" the camera:
switch to a new image coordinate system ($\tilde{u}, \tilde{v})$ defined as

$$
\left[\begin{array}{c}
w \tilde{u} \\
w \tilde{v} \\
w
\end{array}\right]=K^{-1} \cdot\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right] \quad \begin{aligned}
& \mathbf{Q}: \text { what kind of transform } \\
& \text { is this for camera's image? }
\end{aligned}
$$

- then, camera's new projection matrix \widetilde{P} becomes

$$
\left.\tilde{P}=K^{-1} P=\bar{K} \times \underline{K} \cdot\left[\begin{array}{l|l}
R & T
\end{array}\right]=\begin{array}{ll|l}
R & T
\end{array}\right]
$$

rotation and translation only

Calibrated (Normalized) Camera

After normalization, "effective" intrinsic parameters form an identity matrix

 embedded in \mathbb{R}^{3}

Geometric interpretation:
focal length $f=1$
point $(0,0)=$ intersection of image plane with optical axis

Calibrated (Normalized) Camera

To project onto a calibrated camera (a.k.a. normalized camera) one needs only its position (translation+rotation) in world coordinates

> calibrated/normalized camera's projection matrix

$$
P=\left[\begin{array}{c|c}
R & T
\end{array}\right] \quad \begin{aligned}
& \text { still } 3 \times 4 \text { matrix } \\
& \text { but only } 6 \text { d.o.f }
\end{aligned}
$$

camera-centered coordinate system

Calibrated (Normalized) Camera

To project onto a calibrated camera (a.k.a. normalized camera) one needs only its position (translation+rotation) in world coordinates

Calibrated (Normalized) Camera

To project onto a calibrated camera (a.k.a. normalized camera) one needs only its position (translation+rotation) in world coordinates

$$
P=\left[\begin{array}{c|c}
R & T
\end{array}\right] \quad \begin{aligned}
& \text { still } 3 \times 4 \text { matrix } \\
& \text { but only } 6 \text { d.o.f }
\end{aligned}
$$

Estimating multiple viewpoints P_{n} is the "motion" part of the structure-from-motion problem NOTE: camera calibration uses known 3D points $\left\{\tilde{X}_{i}\right\}$.

The "structure" part of $S f M$ problem estimates unknown 3D scene points $\left\{\tilde{X}_{i}\right\}$.
(later in this topic)

Calibrated (Normalized) Camera

For simplicity, the rest of this topic assumes that all images are normalized (calibrated cameras)

unless explicitly stated otherwise

Two cameras geometry

Epipolar geometry

essential \& fundamental matrices

Motivation: helps reconstruction

Stereo reconstruction

From 2D images back to 3D scene

Triangulation: can reconstruct a point as an intersection of two rays, assuming...

- known projection matrix (camera position)
- known point correspondence

Epipolar lines

- Find pairs of corresponding pixels (that come from the same 3D scene point)
- not trivial (remember mosaicing)

Question: does any ray

unknown 3D scene

epipolar line in the left image for point p_{2} corresponding point must be on this line

Any right image point p_{2} corresponds to some left image epipolar line. It is a projection of ray $C_{2} \rightarrow p_{2}$ (ray $C_{2} \rightarrow$ unknown 3D scene point).

Epipolar lines

Example [from Carl Olsson] (two stationary cameras)

left camera image
consider some features in the right image (projections of some 3D points)
(contains the right camera)
Any right image point p_{2} corresponds to some left image epipolar line. It is a projection of ray $C_{2} \rightarrow p_{2}$ (ray $C_{2} \rightarrow$ unknown 3D scene point).

Epipolar lines

Similarly, for any given point p_{l} in the left image...

epipolar constraint for the right image: for any point p_{l} in the left image, the corresponding point in the right image must be on the line where plane $p_{1} C_{1} C_{2}$ intersects the right image (right image epipolar line)

- reduces correspondence problem to 1D search along conjugate epipolar lines

Epipolar lines

System of corresponding epipolar lines depends only on camera set up and it does not depend on 3D scene.

Epipolar lines

System of corresponding epipolar lines depends only on

 camera set up and it does not depend on 3D scene.

- Intersection of epipolar planes (planes containing base line $C_{1} C_{2}$) with image planes define a system of corresponding epipolar lines
- Corresponding points can be only on corresponding epipolar lines
- important to know such lines when searching for corresponding pairs of points

Epipolar lines

- How can we compute epipolar lines for a given pair of images?
- if known, camera projection matrices P_{1} and P_{2} contain all information

$$
e_{1}=P_{1} C_{2} \quad e_{2}=P_{2} C_{1} \quad x_{1}=P_{1} X \quad x_{2}=P_{2} X \quad(X-\text { any } 3 \mathrm{D} \text { point })
$$

- but only relative position of two cameras really matters: can estimate a single 3×3 essential matrix rather than two 3×4 matrices $P=(R \mid T) \ldots$

Essential matrix E

(definition)

The system of corresponding epipolar lines is fully described by a 3×3 matrix E in equation below

3×3 matrix

$$
\underbrace{x_{2}^{T} \underset{l_{2}}{E} x_{1}}_{\left(l_{1}\right)^{T}}=0
$$

for any pair of pixels/points x_{1} and x_{2} on the corresponding epipolar lines (assuming calibrated cameras)

NOTE: given x_{1} in image 1 vector $l_{2}=E x_{1}$ gives equation $x_{2} \cdot l_{2}=0$ (a line in image 2) given x_{2} in image 2 vector $l_{1}=E^{T} x_{2}$ gives equation $x_{1} \cdot l_{1}=0$ (a line in image 1$)$

Essential matrix $E \quad$ (proof of existence)

Recall: assuming calibrated cameras, pixels x_{1} and x_{2} in (homogeneous) image coordinates can be treated as 3D points (vectors) in the corresponding camera-centered coordinates of 3D space

for any pair of pixels/points x_{1} and x_{2} on the corresponding epipolar lines (assuming calibrated cameras)

co-planarity constraint for x_{1} and x_{2}

treating x_{1} and x_{2} as vectors in \mathbb{R}^{3}
NOTE: $R x_{1}$ is vector x_{l} in camera 2 coordinates and $T \times R x_{l}$ is the green plane's normal (camera 2 coordinates)

Essential matrix $E \quad$ (proof of existence)

NOTE: cross product $a \times b$ can be represented as matrix multiplication

$$
\begin{aligned}
& a=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \quad b=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \quad \Rightarrow \quad a \times b= \\
& \underbrace{\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]} \\
& \text { notation: }[a]_{\times} \\
& \text {3x3 skew-symmetric matrix, rank } 2 \\
& \text { (a.k.a. antisymmetric matrix } \mathrm{M}=-\mathrm{M}^{\mathrm{T}} \text {) }
\end{aligned}
$$

Q: null space of $[a]_{x}$ dimensions? \quad A: $0 \quad$ B: $1 \quad$ C: $2 \quad$ D: 3
dot product cross product
$x_{2}:\left[T \dot{\times}\left(R x_{1}\right)\right]=0$
co-planarity constraint for x_{1} and x_{2} treating x_{1} and x_{2} as vectors in \mathbb{R}^{3}

Essential matrix E

(proof of existence)

NOTE: due to homogeneous coordinates, scale of E is arbitrary

\[

\]

matrix expression

Essential matrix E

NOTE: due to homogeneous coordinates, scale of E is arbitrary

$$
x_{2}^{T} E x_{1}=0
$$

matrix expression

Essential matrix E

Theorem [existence and uniqueness of essential matrix]: Assume two calibrated cameras with non-zero baseline. There exists (unique up to scale) 3×3 matrix E such that for any $\quad X \in \mathcal{P}^{3}$

$$
x_{1}^{T} E x_{2}=0
$$

where $x_{1}, x_{2} \in \mathcal{P}^{2}$ are projections of X on two cameras, i.e. $x_{i}=P_{i} X$ for cameras' projection matrices P_{1} and P_{2}.
nontrivial exercise: prove up-to-scale uniqueness of E
E is defined by a relative position of two cameras (R and T), as expected

$$
E=[T]_{\times} R
$$

NOTE: due to homogeneous coordinates, scale of E is arbitrary

$$
x_{2}^{T} E x_{1}=0
$$

essential
matrix

matrix expression

Q: How many d.o.f in E ?
A: $5=3$ (rotation) $+3-1$ (scale of T is arbitrary)

Essential matrix E

Theorem [existence and uniqueness of essential matrix]: Assume two calibrated cameras with non-zero baseline. There exists (unique up to scale) 3×3 matrix E such that for any $\quad X \in \mathcal{P}^{3}$

$$
x_{1}^{T} E x_{2}=0
$$

where $x_{1}, x_{2} \in \mathcal{P}^{2}$ are projections of X on two cameras, i.e. $x_{i}=P_{i} X$ for cameras' projection matrices P_{1} and P_{2}.
nontrivial exercise: prove up-to-scale uniqueness of E
E is defined by a relative position of two cameras (R and T), as expected

$$
E=[T]_{\times} R
$$

NOTE: due to homogeneous coordinates, scale of E is arbitrary

$$
x_{2}^{T} E x_{1}=0
$$

essential
matrix

matrix expression

Q: What is the rank of E ?

Fundamental matrix F

Essential and Fundamental matrices

essential matrix E

fundamental matrix F

- epipolar lines $x_{2}^{T} E x_{1}=0$ (for two calibrated cameras)
- rank $2 E=[T]_{\times} R$
- epipoles e_{1} and e_{2} are right and left null vectors for E

$$
E e_{1}=\mathbf{0} \quad e_{2}^{T} E=\mathbf{0}^{T}
$$

- 5 d.o.f (6 from $R \& T$, - scale of T)
- two equal non-zero singular values
- epipolar lines $x_{2}^{T} F x_{1}=0$ (for two arbitrary cameras)
- rank $2 \quad F=K^{-T} E K^{-1}$
- epipoles e_{1} and e_{2} are right and left null vectors for F

$$
F e_{1}=\mathbf{0} \quad e_{2}^{T} F=\mathbf{0}^{T}
$$

- 7 d.o.f (9 par., - scale \& $\operatorname{det} F=0$)
- two non-zero singular values

What's left to cover

- Estimation of E and F
- simpler 8-point method (no explicit enforcement of rank or other constraints for E or F)
- more advanced 5-point method (see H\&Z book, we do not cover this in class)
- similarly to homography estimation in previous topics, we cover only least squares for algebraic errors (reprojection errors use more advanced optimization)
- Extraction of cameras (projection matrices) from E
- Structure from Motion
- match, find E, find cameras (estimate pose), triangulate (estimate structure)
- bundle adjustment
- reconstruction ambiguities

Estimating F or E from $N \geq 8$ matches

8-point method

Assume corresponding points $\mathbf{x}_{i} \leftrightarrow \overline{\mathbf{x}}_{i}$ in two images (matched pair corresponding to a projection of unknown 3D point X_{i})

They must lie on the corresponding epipolar lines, thus

$$
\overline{\mathbf{x}}_{i}^{T} F \mathbf{x}_{i}=0 \quad \text { (use } E \text { for calibrated images) }
$$

If $\mathbf{x}_{i}=\left(x_{i}, y_{i}, z_{i}\right)$ and $\overline{\mathbf{x}}_{i}=\left(\bar{x}_{i}, \bar{y}_{i}, \bar{z}_{i}\right)$ then
$\overline{\mathbf{x}}_{i}^{T} F \mathbf{x}_{i}=F_{11} \bar{x}_{i} x_{i}+F_{12} \bar{x}_{i} y_{i}+F_{13} \bar{x}_{i} z_{i}$
$+F_{21} \bar{y}_{i} x_{i}+F_{22} \bar{y}_{i} y_{i}+F_{23} \bar{y}_{i} z_{i}$
$+F_{31} \bar{z}_{i} x_{i}+F_{32} \bar{z}_{i} y_{i}+F_{33} \bar{z}_{i} z_{i}=0$
One matching pair $\mathbf{x}_{i} \leftrightarrow \overline{\mathbf{x}}_{i}$ gives only one linear equation. Eight is enough to determine elements of 3×3 matrix F (as scale is arbitrary)

Note: enforcing known properties (e.g. rank=2) allows to use fewer points.

Estimating F or E from $N \geq 8$ matches

In matrix form: one row for each of $N \geq 8$ correspondences

$\mathbf{A} \mathbf{f}=\mathbf{0}$

If matched points have some errors (not exact locations)?

Estimating F or E from $N \geq 8$ matches

solve homogeneous least squares

as in homography estimation, constraint $\|\mathbf{f}\|=1$ fixes the scale of \mathbf{f} (i.e. F)

Use eigen vector for the smallest eigen value of 9 x 9 matrix $\mathbf{A}^{T} \mathbf{A}$

Extracting cameras from essential matrix E

Now assume essential matrix E is given, need to find P_{1} and P_{2}

Given essential matrix $E=U\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right] V^{T}$
find rotation R and translation T such that $E=[T]_{\times} R$

Extracting cameras from essential matrix E

Four distinct R, T solutions
(up to scale)
Assume SVD decomposition $E=U\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right] V^{T}$ such that $\operatorname{det}\left(U V^{T}\right)=1\left(\right.$ if $\operatorname{det}\left(U V^{T}\right)=-1$ switch the sign of the last column in $\left.V\right)$.

Then, using special matrix $W:=\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$ we have

$$
\begin{array}{|lll}
\hline E=[T]_{\times} R \text { for any combination of } & R=U W V^{T} \text { or } U W^{T} V^{T} \\
\text { and } & \\
& \\
\text { see }[H \& Z: \text { sec } 9.6 .2, \text { p.258] for proof } & \text { the last column of } U \\
\text { Q: Why? }
\end{array}
$$

Extracting cameras from essential matrix E

Four distinct R, T solutions
(up to scale of T)

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
E=[T]_{\times} R \text { for any combination of } \quad R=U W V^{T} \text { or } U W^{T} V^{T} \\
\text { and } T= \pm U_{3}(\text { scale is arbitrary }) \\
\text { see [H\&Z:sec 9.6.2, p.258] for proof }
\end{array} \\
\hline
\end{array} \\
& \text { Q: Why? }
\end{aligned}
$$

Extracting cameras from essential matrix E

Four distinct R, T solutions

Extracting cameras from essential matrix E

Four distinct R, T solutions

(up to scale of T)
Two given views of a chair

Example:
 [from Carl Olsson]

Extracting cameras from essential matrix E

Four distinct R, T solutions
baseline reversal $\left(T= \pm U_{3}\right)$
(up to scale of T)

Example:
 [from Carl Olsson]

- four distinct relative camera positions (motion R, T) computed from E (up to scale)
- 3D structure $\left\{X_{i}\right\}$ computed from correspondences $\mathbf{X}_{i} \leftrightarrow \overline{\mathbf{X}}_{i}$ by triangulation (more soon...) up to a similarity transformation (i.e. scale+position+orientation)

Extracting cameras from fundamental matrix F

One can also estimate camera projection matrices from fundamental matrix, but there are more ambiguities [see H\&Z]

Examples
[from Carl Olsson]

"projective" ambiguity (cameras estimated from F)

3 D reconstruction with similarity transform ambiguity (cameras estimated from E)

Triangulation

Now, assume known projection matrices P_{1}, P_{2} and a match $\mathbf{x}_{1} \leftrightarrow \mathbf{x}_{2}$

$$
P_{1}=[I \mid 0]
$$

$$
\begin{aligned}
& \text { projection } \\
& \text { constraints }
\end{aligned}\left[\begin{array}{c}
w_{1} u_{1} \\
w_{1} v_{1} \\
w_{1}
\end{array}\right]=P_{1} \cdot\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] \quad\left[\begin{array}{c}
w_{2} u_{2} \\
w_{2} v_{2} \\
w_{2}
\end{array}\right]=P_{2} \cdot\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

6 equations with 5 unknown (X, Y, Z, w_{1}, w_{2}) But, we do not care about $\mathrm{w}_{1} \& \mathrm{w}_{2}-$ eliminate them (à la slide 15 topic 6) => 4 equations with 3 unknown (X, Y, Z)

Triangulation

Now, assume known projection matrices P_{1}, P_{2} and a match $\mathbf{x}_{1} \leftrightarrow \mathbf{x}_{2}$

$$
\begin{aligned}
& \text { projection } \\
& \text { constraints }
\end{aligned}\left[\begin{array}{c}
w_{1} u_{1} \\
w_{1} v_{1} \\
w_{1}
\end{array}\right]=P_{1} \cdot\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] \quad\left[\begin{array}{c}
w_{2} u_{2} \\
w_{2} v_{2} \\
w_{2}
\end{array}\right]=P_{2} \cdot\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

One equation is redundant only if points x_{1}, x_{2} are exactly on the corresponding epipolar lines (the corresponding rays intersect in 3D). Due to errors, use least squares.

Structure-from-Motion workflow

Basic sequential reconstruction

- For the first two images, use 8-point algorithm to estimate essential matrix E, cameras, and triangulate some points $\left\{X_{i}\right\}$.
- Each new view should see some previously reconstructed scene points $\left\{X_{i}\right\}$ ("feature matches" with previous cameras). Use such points to estimate new camera position (resection problem).
- Add new scene points using triangulation, e.g. for new "matches" with previously non-matched (and non-triangulated) features in earlier views.
- If there are more cameras, iterate previous two steps.
- Issues
- errors can accumulate
- new views are used only to add new 3D points, but they can help to improve accuracy for previously reconstructed scene

Structure-from-Motion workflow

"Bundle adjustment"

i-th "feature track"

$$
\operatorname{tr}_{i}:=\underbrace{\left\{\begin{array}{c}
\uparrow(i)
\end{array}\right\}}_{\substack{x_{i k}}}
$$

$$
\min _{\left\{P_{k}\right\},\left\{X_{i}\right\}} \sum_{i} \sum_{k \in V(i)}\left\|x_{i k}-P_{k} X_{i}\right\|
$$

Structure-from-Motion workflow

https://www.youtube.com/watch?v=i7ierVkXYa8 from Carl Olsson

Applications of multi-view geometry:

Pose estimation
Rigid motion segmentation
Augmented reality
Special effects in video
Volumetric 3D reconstruction
Depth reconstruction (stereo-next topic)

