
International Journal of Computer Vision (IJCV) August 2018 (accepted)
https://doi.org/10.1007/s11263-018-1115-1

Kernel Cuts: Kernel and Spectral Clustering meet Regularization

Meng Tang ⋅ Dmitrii Marin ⋅ Ismail Ben Ayed ⋅ Yuri Boykov

Received: date / Accepted: date

Abstract This work bridges the gap between two popular
methodologies for data partitioning: kernel clustering and
regularization-based segmentation. While addressing closely
related practical problems, these general methodologies may
seem very different based on how they are covered in the
literature. The differences may show up in motivation, for-
mulation, and optimization, e.g. spectral relaxation vs max-
flow. We explain how regularization and kernel clustering
can work together and why this is useful. Our joint energy
combines standard regularization, e.g. MRF potentials, and
kernel clustering criteria like normalized cut. Complemen-
tarity of such terms is demonstrated in many applications
using our bound optimization Kernel Cut algorithm for the
joint energy (code is publicly available). While detailing com-
binatorial move-making, our main focus are new linear ker-
nel and spectral bounds for kernel clustering criteria allow-
ing their integration with any regularization objectives with
existing discrete or continuous solvers.

Keywords Segmentation ⋅ Markov Random Fields ⋅
Spectral Clustering ⋅ Kernel Methods ⋅ Bound Optimization

1 Introduction: Terminology and Motivation

While independently developed as different methodologies,
standard regularization and kernel clustering techniques are
based on objective functions with many complementary prop-
erties. Our goal is to combine these functions into a joint ob-
jective or energy applicable to image segmentation or gen-
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eral clustering problems. On the one hand, we show that
common regularization methods can use extra terms like
normalized cut (NC) [94] to enforce balanced partitioning of
arbitrary high-dimensional image features, e.g. a combina-
tion of color, texture, depth, or motion, where model-fitting
[114,90] fails, compare Fig.1(b)(e). On the other hand, stan-
dard clustering applications can benefit from an inclusion
of basic pairwise or higher-order regularization constraints,
e.g. edge alignment [22,14], bin-consistency [54], label cost
[33]. Regularization and kernel clustering could not be com-
bined before due to optimization difficulties [60].

On a surface, even the formulations of kernel cluster-
ing and regularization-based segmentation may seem signif-
icantly different. While the general terms clustering and seg-
mentation are largely synonyms, the latter is more common
for images where data points are intensities, colors, or higher
dimensional features Ip ∈ RN sampled at regularly placed
pixels p ∈RM . For example, the image in Fig.1(a) combines
colors and motion vectors into RGBUV features Ip ∈ R5

on grid points p ∈ R2. The pixels’ locations are important.
Many regularization methods for image segmentation treat
Ip as a function I ∶ RM → RN and process domain RM
(locations) and range RN (features) in very different ways.
For example, MRF [41] and variational techniques [76] use
pixel locations for geometrically motivated segments’ shape
priors, while pixel features are used in segments’ appearance
likelihood models [22,14,15,86], e.g. Fig.1(b).

In contrast, clustering typically assumes arbitrary data
points Ip with non-informative indices p. General cluster-
ing techniques [38,105,3], e.g. K-means or spectral meth-
ods, apply to images [94,1] by combining pixel locations
with colors or other features into data points Ip in RM+N .
For example, the result in Fig.1(c) uses R7 points combin-
ing locations XY and RGBUV values. Without the locations
the result is spatially noisy (d). We focus on a well-known
general group of kernel clustering methods [48,94,6,35].
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RGB and UV features MRF + RGBUV hist. fitting NC (XY+RGBUV) NC (RGBUV) MRF + NC (RGBUV)

(a) image + optic flow (b) grab-cut (c) spectral clustering (d) spectral clustering (e) kernel cut
(input data) (weak local minima) (weak edge alignment) (irregular boundary) (our approach)

Fig. 1: Segmentation of 5D image data (a). For higher-dimensional features, regularized model-fitting [114,33] becomes
sensitive to local minima, e.g. grabcut [90] fitting RGBUV histograms (b). Spectral clustering like normalized cut (NC) [94]
is scalable to high dimensional features, but it is known for splitting regions (c) or lack of regularity (d). Our kernel cut (e)
combines kernel clustering over arbitrary features with standard regularization in the image domain, see energy (1).

variable our definition / representation range alternative relaxed representation

Sp segment (label) assignment for given pixel p ∈ Ω {1, . . . ,K}
vector [0,1]K in ∆K

p-th row of assignment matrix S

Sc (Sp ∣p ∈ c) - labeling of pixels in factor c ⊆ Ω {1, . . . ,K}∣c∣ subset of rows of assignment matrix S

S (Sp ∣p ∈ Ω) - segmentation or labeling of all points {1, . . . ,K}∣Ω∣ an assignment matrix [0,1]∣Ω∣×K

Skp indicator for “p is in segment k”, i.e. Skp ≡ [Sp = k] {0,1} assignment matrix element in [0,1]

Sk
k-th segment, that is, subset {p ⊂ Ω ∣Sp = k}

or the corresponding indicator vector (Skp ∣p ∈ Ω)
P(Ω) or {0,1}∣Ω∣ vector [0,1]∣Ω∣

k-th column of assignment matrix S

Sk
′ transpose of vector Sk, i.e. Sk

′
≡ (Sk)T {0,1}∣Ω∣ (transposed) vector [0,1]∣Ω∣

Table 1: Our notation for segmentation of points p ∈ Ω uses discrete labels and binary indicators (the first three columns).
Without much ambiguity, segment Sk could mean both a subset of Ω or its indicator vector, i.e. Sk is either an element
of power set P(Ω) or a vector {0,1}∣Ω∣. While unnecessary for most of the technical results in this paper, in the context
of relaxation methods it is easy to switch to an alternative representation (the last column) where segment Sk becomes a
relaxed vector [0,1]∣Ω∣. This is consistent with a common (relaxed) assignment matrix representation of segmentation S
where integer label Sp becomes a vector on probability simplex ∆K specifying pixel’s support/distribution over K labels.

Some differences in formulations of kernel clustering
and regularization methods are not essential and easily re-
solve with proper notation working as a common platform
for both (Sec.1.1, Tab.1). Our notation presents spectral clus-
tering as a high-order term in a joint energy making similar-
ities and differences more transparent. Once notation is es-
tablished, we present our joint energy (1) combining kernel
clustering and regularization terms, give some specific basic
examples (Tab.2), and further motivate our approach. Later
background section reviews standard (MRF) regularization
and kernel clustering objectives in details and technical sec-
tions explain how to optimize the joint energy using new
linear bounds for the high-order kernel clustering term.

1.1 Notation and conventions

We use notation applicable to either image segmentation or
general data clustering. Let Ω be a set of pixels, voxels, or
any other points p. For example, for 2D images Ω could be
a subset of regularly spaced points in R2. Set Ω could also
represent data points indices. We assume that every p ∈ Ω
comes with an observed feature Ip ∈ RN . For example, Ip
could be a greyscale intensity inR1, an RGB color inR3, or
RGBUV features in R5 as in Fig.1(a), et cetera. If needed,
feature Ip could also include the pixel’s location.

Our notation describing segmentation of Ω is summa-
rized in the first three columns of Table 1. We use the fol-
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some standard
“graph cut”

criteria

regularization terms ∑c∈F Ec(Sc) kernel clustering terms EA(S)

∑
pq

wpq ⋅ [Sp ≠ Sq] ≡
1

2
∑
k

Sk
′
W(1 − Sk) ∑

k

Sk
′
A(1 − Sk)

∣Sk∣
or ∑

k

Sk
′
A(1 − Sk)

d′Sk

multi-way cut, a.k.a. Potts model [16], see (2) average and normalized cuts [94], see (38) and (39)

Table 2: Examples of “graph cut” criteria appearing in the contexts of (MRF) regularization and kernel clustering that can
be used in joint energy (1) simultaneously. The cut cost, i.e. the sum of edge weights wpq or affinities Apq between the
segments, can be represented via matricesW = [wpq] or A = [Apq], and segment indicators Sk, see Tab.1. The right column
differs only by normalization over segment cardinality ∣Sk ∣ or weighted cardinality d′Sk where d ∶= A1 are node degrees.

lowing standard notation: {⋅∣⋅} stands for sets or subsets, (⋅∣⋅)
stands for ordered collections or vectors, and [⋅] is used in
the context of intervals, matrices, or Iverson brackets1. Note
that this paper uses upper case letters for both vectors and
matrices, but some vectors are denoted by lower case letters.

Our notation in Table 1 is somewhat superfluous, but it
gives flexibility needed for uniting diverse methodologies
for segmentation and clustering covered in Section 2. We
equivalently represent segmentation ofΩ either as a labeling
S ∶= (Sp∣p ∈ Ω) combining integer point labels 1 ≤ Sp ≤ K
or as a partitioning {Sk} of set Ω into K non-overlapping
subsets or segments Sk ∶= {p ∈ Ω∣Sp = k}. As a minor abuse
of notation, Sk will also be a set indicator vector {0,1}∣Ω∣.
Exact interpretation of Sk is clear from the context. Since
our bounds are also useful for relaxation methods, we may
discuss relaxed segment support vectors Sk in [0,1]∣Ω∣.

1.2 Our approach summary

We combine standard kernel (pairwise) clustering criteria
such as Average Association (AA) or Normalized Cut (NC)
[94] and common regularization functionals such as MRF
potentials [41,64]. The general form of our joint energy is

E(S) = EA(S) + γ ∑
c∈F

Ec(Sc) (1)

where the first term is some kernel clustering objective based
on data affinity matrix or kernel A ∶= [Apq] with elements
Apq ∶= A(Ip, Iq) defined by some similarity functionA(⋅, ⋅).
The second term in (1) is a general formulation of MRF po-
tentials [16,54,33]. Table 2 previews basic examples of the
terms in joint energy (1) using different “graph cut” criteria.

Constant γ in (1) is a relative weight of the (MRF) regu-
larization term. Subset c ⊆ Ω represents a factor often con-
sisting of nearby pixels. Factor labels Sc ∶= (Sp ∣p ∈ c) is a
restriction of labeling S to c. Potentials Ec(Sc) for a given
set of factors F represent various unary, second, or higher
order constraints, where factor size ∣c∣ defines the order. The

1 Iverson brackets [⋅] enclosing a logical proposition, e.g. [Sp = k],
return 1 or 0 depending on true or false value of this proposition.

left column in Table 2 is an example of the second-order
Potts model that can be equivalently written as a quadratic
function. Factor features {Ip ∣p ∈ c} often work as param-
eters for potentials Ec. For example, wpq = w(Ip, Iq) is
a common way to set pairwise penalties in Tab.2 (left col-
umn). Section 2.1 reviews several standard MRF potentials.

Typical kernel clustering methods encourage balanced
segments using ratio-based objectives EA as in Tab.2 (right
column). Due to normalization, such objectives can be seen
as high-order potentials of order ∣Ω∣ that are difficult to opti-
mize. Sections 2.2, 2.3 review popular kernel clustering cri-
teria and standard approximate optimization methods.

In order to optimize the combination of kernel clustering
term EA with regularization constraints in energy (1), we
propose two unary (linear) bounds for EA. Such bounds are
easy to integrate into many existing regularization solvers
as outlined in Figure 2. In general, the second term in (1)
could be any discrete or continuous objective with a good
solver. We focus on discrete (MRF/CRF) regularization po-
tentials in (1) only to be specific and because the code for
the corresponding solvers is widely available. The follow-
ing two subsections summarize the motivation and the main
technical contributions of this paper.
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n

3
an

d
4)

(e.g.Section
3.3)

Sections 2.2 and 2.3
kernel clustering

EA(S)

St

+

unary
(or linear)

term

St+1

Section 2.1
MRF or other regularization

γ ∑
c∈F

Ec(Sc)

discrete or continuous
e.g. [16,49,55,
107,23,24,32].

Fig. 2: Our Kernel Cut approach to minimizing energy (1).
Standard (MRF) regularization solvers can easily integrate
our linear kernel or spectral bounds for the clustering term
(Sec.3,4) producing an iterative bound optimization for (1).
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1.2.1 Motivation and Related work

Due to significant differences in their existing optimization
methods, kernel clustering (e.g. NC) and regularization meth-
ods (e.g. MRF) are used separately in unsupervised or weakly-
supervised applications of vision and learning. They have
complementary strengths and weaknesses.

For example, NC optimizes a balanced kernel cluster-
ing criterion based on a kernel (affinities) between any high-
dimensional features [94,68,4]. In contrast, regularization
methods for unsupervised or weakly-supervised image seg-
mentation typically combine constraints on segments shapes
with probabilistic K-means [53] or explicit model fitting over
segments features [25,114,90,33]. Fitting parametric mod-
els seems viable when data in each segment supports a sim-
ple model, e.g. Gaussian [25] or line/plane [33]. But, if seg-
ment’s data is arbitrarily complex, the corresponding model
should be sufficiently general in order to represent such com-
plexities. Thus, image segmentation of generic objects re-
quires fitting models like histograms or GMMs [114,90].
This results in over-fitting, see Fig.1(b). Indeed, we show
that such over-fitting happens even for low dimensional color
features [98], see Fig.3(b,e) and Fig.4(b). Our joint energy
(1) allows to combine regularization of segments shapes with
unsupervised kernel-based clustering of arbitrarily complex
segments features. In general, kernel-based clustering meth-
ods are a prevalent choice in the learning community as
model fitting (e.g. EM) becomes intractable in high dimen-
sions. Section 5.2 shows potent segmentation results for ba-
sic examples of energy (1) with features like RGBXY (color
+ location), RGBD (color + depth), RGBUV (color + mo-
tion) where regularized model-fitting methods fail.

Standard applications of kernel clustering methods can
also benefit from regularization constraints [111,40,26]. For
example, NC approach to image segmentation is known for
weak alignment to contrast boundaries [4], see Fig.1(cd).
Adding the standard contrast-sensitive Potts (regularization)
term [16,14] offers a principled solution, see Fig.1(e). We
also show benefits from combining NC with higher-order
constraints, such as sparsity or label costs [33]. For example,
Pn-Potts regularization [54] can enforce tag-consistency in
the context of image database clustering. Section 5.1 shows
many proof-of-the-concept examples.

Kernel clustering vs. Potts model: Kernel clustering
objectives EA (Sections 2.2, 2.3) in our joint energy (1) can
be juxtaposed with the most basic MRF regularizer, the Potts
model (Section 2.1), e.g. compare two columns in Tab.2.
Kernel clustering and Potts regularization minimize the sum
of weighted edges between segments on a given graph. Both
corresponding objectives are often called “pairwise” or “cuts”.
The main difference is that clustering criteria EA normalize
the sum of edge weights to encourage balanced partitioning,
while the Potts model minimizes the sum “as is” to reduce

segmentation boundary length. Due to normalization, EA is
a hard-to-optimize high-order term in energy (1).

Both kernel clustering and Potts model objectives are
defined by the graph connectivity and/or the correspond-
ing edge weights or affinities, e.g. wpq or Apq in Sections
2.1 and 2.2. It is usual to set the neighborhood and edge
weights based on specific features, criteria, and application.
For instance, Potts model over nearest-neighbor pixel grid
defines first-order geometric shape priors [15], while an ex-
ample of larger connectivity Potts is dense CRF [58,103].
All Potts models lack balancing. Their minimization results
in a trivial solution unless there are some additional con-
straints, e.g. volumetric or data likelihood terms (Sec.2.1).

Kernel clustering criteriaEA normally use dense graphs.
But unlike dense CRF or any other Potts model, the corre-
sponding ratio-based objectives are designed for unsuper-
vised balanced partitioning that does not require any known
or estimated data likelihood models.

1.2.2 Main contributions

Our energy (1) combines standard concepts in unsupervised
learning with regularization methodologies common in com-
puter vision. Previous efforts [60] combining kernel cluster-
ing (e.g. NC) with the Potts model significantly altered the
latter to make it fit the standard trace-based formulation of
NC, see Sec.2.4. In contrast, we propose a general majorize-
minimize optimization principle directly integrating our new
unary/linear bounds for kernel clustering objectives EA into
existing powerful solvers for Potts or other regularization
models. Examples of such solvers are combinatorial [16,
49], LP relaxation [55,107], mean field approximation [58],
or TV-based [23,24,32] methods.

Our preliminary results appear in [97] and [100]. The
main contributions of our work are summarized below:

– We propose a general multi-label segmentation or clus-
tering energy (1) combining kernel clustering (e.g. NC)
with second or higher-order regularization (e.g. MRF).
The clustering term can enforce balanced partitioning of
observed features and MRF or other terms can enforce
regularization constraints. In particular, including bal-
anced kernel clustering term is a robust well-motivated
alternative to model-fitting terms [114,90], which fail on
higher dimensional image features.

– We use a concave relaxation to derive two types of unary
(linear) upper bounds for several classes of kernel clus-
tering criteria EA. The two types are kernel bound (ex-
act) and spectral bound2 (approximate). Interestingly,
optimizing our linear bounds forEA(S) (no other terms)
over discrete segmentation variables Sk ∈ {0,1}∣Ω∣ is

2 Here spectral bound means spectral auxiliary function in the con-
text of optimization, not to be confused with bounds on eigenvalues.
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equivalent to iterative kernel K-means or K-means dis-
cretization heuristic in spectral relaxation methods.

– Our unary/linear bounds for EA give solvable auxiliary
functions for joint energy (1) as long as its second term
has a solver that can integrate extra unary/linear poten-
tials, see Fig.2. For example, the second term can be any
regularization potentials solvable by discrete (e.g. mes-
sage passing, relaxations, mean-field approximations) or
continuous (e.g. convex, primal-dual) algorithms. In the
context of standard pairwise and higher-order MRF po-
tentials we demonstrate move-making algorithms gener-
alizing α-expansion and αβ-swap moves to energy (1).

– As our experiments show, typical applications of kernel
clustering (e.g. NC) can benefit from extra MRF con-
straints. MRF segmentation also benefits from kernel clus-
tering terms encouraging balanced partitioning of object
features. In particular, NC+MRF framework scales to
object segmentation with higher-dimensional image fea-
tures (e.g. RGBXY, RGBD, RGBM) where standard reg-
ularization methods with model-fitting [114,90,33] fail.

The rest of the paper is organized as follows. Background
Section 2 starts from reviewing standard (MRF) regulariza-
tion models for segmentation. Due to importance for our
work, Section 2 also covers the basics of clustering from K-
means to its powerful kernel-based generalizations, includ-
ing normalized cut (NC). The main technical Sections 3 and
4 present our kernel and spectral bounds for standard kernel
clustering objectives EA. They also discuss combinatorial
move making graph cut algorithms using such unary/linear
bounds for optimizing joint energy (1) combining EA with
MRF regularization constraints. Section 5 presents many ex-
periments where either standard kernel clustering methods
benefit from additional MRF constraints or common appli-
cations of MRF benefit from an additional kernel clustering
term for various high-dimensional image features.

2 Background on Regularization and Clustering

2.1 Overview of MRF regularization

Probably the most basic MRF regularization potential corre-
sponds to the pairwise (second-order) Potts model [16] used
for segmentation boundary smoothness and edge alignment

∑
c∈F

Ec(Sc) = ∑
pq∈N

wpq ⋅ [Sp ≠ Sq] ≈ ∣∣∂S∣∣ (2)

where a set of pairwise factors F = N includes edges c =
{pq} between pairs of neighboring nodes and [⋅] are Iverson
brackets. Weight wpq is a discontinuity penalty between p
and q. It could be a constant or may be set by a decreasing

function of intensity difference Ip−Iq attracting the segmen-
tation boundary to image contrast edges [14]. This is simi-
lar to the image-based boundary length in geodesic contours
[22,15].

A useful bin consistency constraint enforced by the Pn-
Potts model [54] is defined over an arbitrary collection of
high-order factorsF . Factors c ∈ F correspond to predefined
subsets of nodes such as superpixels [54] or bins of pixels
with the same color/feature [85,98]. The model penalizes
inconsistency in segmentation of each factor

∑
c∈F

Ec(Sc) = ∑
c∈F

min{T, ∣c∣ − ∣Sc∣∗} (3)

where T is some threshold and ∣Sc∣∗ ∶= maxk ∣Sk ∩ c∣ is
the cardinality of the largest segment inside c. Potential (3)
has its lowest value (zero) when all nodes in each factor are
within the same segment.

Standard label cost [33] is a sparsity potential defined
for a single high-order factor c = Ω. In its simplest form it
penalizes the number of distinct segments (labels) in S

EΩ(S) = ∑
k

hk ⋅ [∣Sk ∣ > 0] (4)

where hk could be a constant or a cost for each specific label.
Potentials (2), (3), (4) are only a few examples of regu-

larization terms widely used in combination with powerful
discrete solvers like graph cut [16], belief propagation [109],
TRWS [56], LP relaxation [107,52], or continuous methods
[23,24,32].

Image segmentation methods often combine regulariza-
tion with a likelihood term integrating segments/objects color
models. For example, [14,13] used graph cuts to combine
second-order edge alignment (2) with a unary (first-order)
appearance term

−∑
k

∑
p∈Sk

logP k(Ip) (5)

where {P k} are given probability distributions. Unary terms
like (5) are easy to integrate into any of the solvers above.

If unknown, parameters of the models {P k} in a regu-
larization energy including (5) are often estimated by iter-
atively minimizing the energy with respect to S and model
parameters [114,25,5,90,33]. In presence of variable model
parameters, (5) can be seen as a maximum likelihood (ML)
model-fitting term or a probabilistic K-means clustering ob-
jective [53]. The next section reviews K-means and other
standard clustering methods.

2.2 Overview of K-means and clustering

Many clustering methods are based on K-means (KM). The
most basic iterative KM algorithm [39] can be described as
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the block-coordinate descent for the following mixed objec-
tive

F (S,m) ∶= ∑
k

∑
p∈Sk

∥Ip −mk∥2 (6)

combining discrete variables S = {Sk}Kk=1 with continu-
ous variables m = {mk}Kk=1 representing cluster “centers”.
Norm ∥.∥ denotes the Euclidean metric. For any given S the
optimal centers arg minm F (S,m) are the means

µSk ∶= ∑q∈Sk Iq
∣Sk ∣ (7)

where ∣Sk ∣ is the segment’s cardinality. Assuming current
segments Skt the update operation giving arg minS F (S,µSt)

( basic KM
procedure ) Sp ← arg min

k
∥Ip − µSkt ∥ (8)

defines the next solution St+1 as per standard K-means al-
gorithm. This greedy descent technique converges only to
a local minimum of KM objective (6), which is known to
be NP hard to optimize. There are also other approximation
methods. Below we review the properties of KM objective
(6) independently of optimization.

The optimal centers mk in (7) allow to represent (6) via
an equivalent objective of a single argument S

∑
k

∑
p∈Sk

∥Ip − µSk∥2 ≡ ∑
k

∣Sk ∣ ⋅ var(Sk). (9)

The sum of squared distances between data points {Ip∣p ∈
Sk} and mean µSk normalized by ∣Sk ∣ gives the sample
variance denoted by var(Sk). Formulation (9) presents the
basic KM objective as a standard variance criterion for clus-
tering. That is, K-means attempts to find K compact clusters
with small variance.

K-means can also be presented as a “pairwise” or ker-
nel clustering criteria with Euclidean affinities. The sample
variance can be expressed as the sum of distances between
all pairs of the points. For example, plugging (7) into (9)
reduces this KM objective to

∑
k

∑pq∈Sk ∥Ip − Iq∥2

2 ∣Sk ∣ . (10)

Taking the square in the denominator transforms (10) to an-
other equivalent KM energy with Euclidean dot-product affini-
ties

c= −∑
k

∑pq∈Sk⟨Ip, Iq⟩
∣Sk ∣ . (11)

Note that we use c= and
c≈ for “up to additive constant” re-

lations.

Alternatively, K-means clustering can be seen as Gaus-
sian model fitting. Formula (5) for normal distributions with
variable means mk and some fixed variance

−∑
k

∑
p∈Sk

logN(Ip∣mk) (12)

equals objective (6) up to a constant.
Various extensions of objectives (6), (9), (10), (11), or

(12) lead to many powerful clustering methods such as ker-
nel K-means, average association, and Normalized Cut, see
Table 3.

2.2.1 Probabilistic K-means (pKM) and model fitting

One way to generalize K-means is to replace squared Eu-
clidean distance in (6) by other distortion measures ∥∥d lead-
ing to a general distortion energy commonly used for clus-
tering

∑
k

∑
p∈Sk

∥Ip −mk∥d. (13)

The optimal value of parameter mk may no longer corre-
spond to a mean. For example, the optimal mk for non-
squared L2 metric is a geometric median. For exponential
distortions the optimal mk may correspond to modes [92,
21], see [99, Appendix B].

A seemingly different way to generalize K-means is to
treat both means and covariance matrices for the normal
distributions in (12) as variables. This corresponds to the
standard elliptic K-means [95,91,33]. In this case variable
model parameters θk = {mk,Σk} and data points Ip are not
in the same space. Yet, it is still possible to present elliptic
K-means as distortion clustering (13) with “distortion” be-
tween Ip and θk defined by an operator ∥⋅−⋅∥d corresponding
to a likelihood function

∥Ip − θk∥d ∶= − logN(Ip∣θk).

Similar distortion measures can be defined for arbitrary prob-
ability distributions with any variable parameters θk. Then,
distortion clustering (13) generalizes to ML model fitting
objective

∑
k

∑
p∈Sk

∥Ip − θk∥d ≡ −∑
k

∑
p∈Sk

logP (Ip∣θk) (14)

which is (5) with explicit model parameters θk. This for-
mulation suggests probabilistic K-means3 (pKM) as a good
idiomatic name for ML model fitting or distortion clustering
(13), even though the corresponding parameters θk are not
“means”, in general.

3 The name probabilistic K-means in the general clustering context
was coined by [53]. They formulated (14) after representing distortion
energy (13) as ML fitting of Gibbs models 1

Zd
e−∥x−m∥d for arbitrary

integrable metrics.
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(a) initialization (b) histogram fitting

(c) basic K-means (d) elliptic K-means

(e) GMM: local min (f) GMM: from gr. truth

(g) K-modes ∼ mean-shift (h) kernel K-means

Fig. 3: Model fitting (pKM) (14) vs kernel K-means (kKM)
(22). Histogram fitting converges in one step assigning ini-
tially dominant bin label (a) to all points in the bin (b):
energy (14,15) is minimal at any volume-balanced solu-
tion with one label inside each bin [53]. Basic and ellip-
tic K-means (one mode GMM) under-fit the data (c,d). Six
mode GMMs over-fit (e) as in (b). GMMs have local min-
ima issues; ground-truth initialization (f) yields lower en-
ergy (14,15). Kernel K-means (21,22) with Gaussian kernel
k in (h) outperforms pKM with distortion ∥∥k in (g) related
to K-modes or mean-shift (weak kKM, see Sec.2.2.3).

Probabilistic K-means (14) is used in image segmen-
tation with models such as elliptic Gaussians [95,91,33],
gamma/exponential [5], or other generative models [73]. Zhu-
Yuille [114] and GrabCut [90] use pKM with highly descrip-
tive probability models such as GMM or histograms. Infor-
mation theoretic analysis in [53] shows that in this case pKM
objective (14) reduces to the standard entropy criterion for
clustering

∑
k

∣Sk ∣ ⋅H(Sk) (15)

where H(Sk) is the distribution entropy for {Ip∣p ∈ Sk}.

(a) Input and initialization

(b) GMM fitting in RGB (GrabCut without edges)

(c) Normalized Cut in RGB

Fig. 4: Without edge alignment (2) GMM-fitting [90] shows
stronger data over-fit compared to kernel clustering [94].

Intuitively, minimization of the entropy criterion (15) fa-
vors clusters with tight or “peaked” distributions. This cri-
terion is widely used in categorical clustering [65] and de-
cision trees [18,66] where the entropy evaluates histograms
over “naturally” discrete features. However, the entropy cri-
terion with either discrete histograms or continuous GMM
densities has limitations in the context of continuous feature
spaces, see [99, Appendix C]. Iterative fitting of descriptive
models is highly sensitive to local minima [98,96] and easily
over-fits even low dimentional features in R2 (Fig.3b,e) or
in R3 (RGB colors, Fig.4b). This may explain why this ap-
proach to clustering is not too common in the learning com-
munity. As proposed in (1), instead of entropy criterion we
will combine MRF regularization with general kernel clus-
tering objectives EA widely used for balanced partitioning
of arbitrary high-dimensional features [94].

2.2.2 Kernel K-means and related “pairwise” clustering

This section reviews pairwise extensions of K-means (11)
such as kernel K-means (kKM) and related kernel clustering
criteria. In machine learning, kKM is a well established data
clustering technique [101,74,42,35,27,50] that can identify
non-linearly separable structures. In contrast to pKM based
on complex models, kKM corresponds to complex (nonlin-
ear) mappings

φ ∶RN →H
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A. basic K-means (KM) (e.g. [39])

∑k∑p∈Sk ∥Ip − µSk∥
2 Variance criterion

= ∑k
∑pq∈Sk ∥Ip−Iq∥

2

2∣Sk ∣ ∑k ∣Sk∣ ⋅ var(Sk)

c
= −∑k

∑pq∈Sk ⟨Ip,Iq⟩
∣Sk ∣

c
= −∑k∑p∈Sk lnN (Ip∣µSk)

B. probabilistic K-means (pKM) C. kernel K-means (kKM)
equivalent energy formulations: equivalent energy formulations:

∑k∑p∈Sk ∥Ip − θk∥d = −∑k∑p∈Sk lnP(Ip∣θk)
∑k∑p∈Sk ∥φ(Ip) − µSk∥

2 = ∑k
∑pq∈Sk ∣∣Ip−Iq ∣∣

2
k

2∣Sk ∣
c
= −∑k

∑pq∈Sk k(Ip,Iq)
∣Sk ∣

related examples: related examples:

elliptic K-means [95,91] Average Association or Distortion [89]

geometric model fitting [33] Average Cut [94]

K-modes [92] or mean-shift [29] (weak kKM) Normalized Cut [94,35] (weighted kKM)

Entropy criterion ∑k ∣Sk∣ ⋅H(Sk) [114,90] Gini criterion ∑k ∣Sk∣ ⋅G(Sk) [18,97]
for highly descriptive models (GMMs, histograms) for small-width normalized kernels [69]

Table 3: K-means and related clustering criteria: Basic K-means (A) minimizes clusters variances. It works as Gaussian
model fitting. Fitting more complex models like elliptic Gaussians [95,91,33], exponential distributions [5], GMM or his-
tograms [114,90] corresponds to probabilistic K-means [53] in (B). Kernel clustering via kernel K-means (C) using more
complex data representation.

embedding data {Ip∣p ∈ Ω} ⊂RN as points φp ≡ φ(Ip) in a
higher-dimensional Hilbert spaceH. The original non-linear
problem can often be solved by simple linear separators of
the embedded points {φp∣p ∈ Ω} ⊂ H. Kernel K-means cor-
responds to the basic K-means (6) in the embedding space

F (S,m) = ∑
k

∑
p∈Sk

∥φp −mk∥2. (16)

Optimal segment centers mk corresponding to the means

µSk =
∑q∈Sk φq

∣Sk ∣ . (17)

reduce (16) to kKM energy of the single variable S similar
to (9)

F (S) = ∑
k

∑
p∈Sk

∥φp − µSk∥2. (18)

Similarly to (10) and (11) one can write kernel cluster-
ing criteria equivalent to (18) based on Euclidean distances
∥φ(Ip)−φ(Iq)∥ or inner products ⟨φ(Ip), φ(Iq)⟩, which are
commonly represented via kernel function k(x, y)

k(x, y) ∶= ⟨φ(x), φ(y)⟩. (19)

The (non-linear) kernel function k(x, y) corresponds to the
inner product inH. It also defines Hilbertian metric4

∥x − y∥2k ∶= ∥φ(x) − φ(y)∥2

≡ k(x,x) + k(y, y) − 2k(x, y) (20)
isometric to the Euclidean metric in the embedding space.
Then, pairwise formulations (10) and (11) for K-means in
the embedding space (18) can be written for the original data
points using isometric kernel distance ∥∥2k in (20)

F (S) ≡ ∑
k

∑pq∈Sk ∥Ip − Iq∥2k
2∣Sk ∣ (21)

or using kernel function k in (19)

F (S) c= −∑
k

∑pq∈Sk k(Ip, Iq)
∣Sk ∣ . (22)

The definition of kernel k in (19) requires embedding
φ. Since pairwise objectives (21) and (22) are defined for
any kernel function in the original data space, it is possible
to formulate kKM by directly specifying an affinity func-
tion or kernel k(x, y) rather than embedding φ(x). This is
typical for kKM explaining why the method is called kernel
K-means rather than embedding K-means5.

4 These can be isometrically embedded into a Hilbert space [46].
5 This could be a name for some clustering techniques constructing

explicit embeddings [8,112] instead of working with pairwise affini-
ties/kernels.
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Given embedding φ, kernel function k defined by (19) is
positive semi-definite (p.s.d), that is k(x, y) ≥ 0 for any x, y.
Moreover, Mercer’s theorem [75] states that p.s.d. condition
for any given kernel k(x, y) is sufficient to guarantee that
k(x, y) is an inner product in some Hilbert space. That is,
it guarantees existence of some embedding φ(x) such that
(19) is satisfied. Therefore, kKM objectives (18), (21), (22)
are equivalently defined either by embeddings φ or p.s.d.
kernels k. Thus, kernels are commonly assumed p.s.d. How-
ever, as discussed later, kernel clustering objective (22) is
also used with non p.s.d. affinities.

To optimize kKM objectives (18), (21), (22) one can use
the basic KM procedure (8) iteratively minimizing mixed
objective (16) explicitly using embedding φ

( explicit kKM
procedure ) Sp ← arg min

k
∥φp − µSkt ∥

(23)

where µSkt is the mean (17) for current segment Skt . Equiv-
alently, this procedure can use kernel k instead of φ. Indeed,
as in Section 8.2.2 of [93], the square of the objective in (23)
is

�
��∥φp∥2 − 2φp

′µSkt + ∥µSkt ∥
2 = −2

φp
′φSkt
∣Skt ∣

+ S
k
t

′
φ′φSkt

∣Skt ∣2

where we use segment Sk as an indicator vector, embed-
ding φ as an embedding matrix φ ∶= [φp] where points φp ≡
φ(Ip) are columns, and ′ denotes the transpose. Since the
crossed term is a constant at p, the right hand side gives an
equivalent objective for computing Sp in (23). Using kernel
matrix K ∶= φ′φ and indicator vector 1p for element p we
get

(
implicit

kKM
procedure

) Sp ← arg min
k

Skt
′KSkt

∣Skt ∣2
− 2

1′pKSkt
∣Skt ∣

(24)

where the kernel matrix is directly determined by kernel k

Kpq ≡ φ′pφq = ⟨φp, φq⟩ = k(Ip, Iq).

Approach (24) has quadratic complexityO(∣Ω∣2) iterations.
But, it avoids explicit high-dimensional embeddings φp in
(23) replacing them by kernel k in all computations, a.k.a.
the kernel trick.

Note that the implicit kKM procedure (24) is guaran-
teed to decrease pairwise kKM objectives (21) or (22) only
for p.s.d. kernels. Indeed, equation (24) is derived from the
standard greedy K-means procedure in the embedding space
(23) assuming kernel (19). The backward reduction of (24)
to (23) can be done only for p.s.d. kernels k when Mercer’s
theorem guarantees existence of some embedding φ such
that k(Ip, Iq) = ⟨φ(Ip), φ(Iq)⟩.

Pairwise energy (21) helps to explain the positive result
for kKM with common Gaussian kernel k = exp

−(Ip−Iq)2

2σ2

in Fig.3(h). Gaussian kernel distance (red plot below)

∥Ip − Iq∥2k ∝ 1 − k(Ip, Iq) = 1 − exp
−(Ip − Iq)2

2σ2
(25)

is a “robust” version of Euclidean
metric (green) in basic K-means
(10). Thus, Gaussian kKM finds
clusters with small local vari-
ances, Fig.3(h). In contrast, ba-
sic K-means (c) tries to find good
clusters with small global vari-
ances, which is impossible for
non-compact clusters.

Average association (AA) or distortion (AD): Equiv-
alent pairwise objectives (21) and (22) suggest natural ex-
tensions of kKM. For example, one can replace Hilbertian
metric ∥∥2k in (21) by an arbitrary zero-diagonal distortion
matrix D = [Dpq] generating average distortion (AD) en-
ergy

Ead(S) ∶= ∑
k

∑pq∈Sk Dpq

2∣Sk ∣ (26)

reducing to kKM energy (21) forDpq = ∥Ip−Iq∥2k. Similarly,
p.s.d. kernel k in (22) can be replaced by an arbitrary pair-
wise similarity or affinity matrix A = [Apq] defining stan-
dard average association (AA) energy

Eaa(S) ∶= −∑
k

∑pq∈Sk Apq
∣Sk ∣ (27)

reducing to kKM objective (22) forApq = k(Ip, Iq). We will
also use association between any two segments Si and Sj

assoc(Si, Sj) ∶= ∑
p∈Si,q∈Sj

Apq ≡ Si
′
ASj (28)

allowing to rewrite AA energy (27) as

Eaa(S) ≡ −∑
k

assoc(Sk, Sk)
∣Sk ∣ ≡ −∑

k

Sk
′
ASk

1′Sk
(29)

The matrix expressions in (28) and (29) represent segments
Sk as indicator vectors such that Skp = 1 iff Sp = k and
symbol ′ means a transpose. Matrix notation as in (29) will
be used for all kernel clustering objectives in this paper.

kKM algorithm (24) is not guaranteed to decrease (27)
for improper (non p.s.d.) kernel matrix K = A, but gen-
eral AA and AD energies could be useful despite optimiza-
tion issues. However, [89] showed that dropping metric and
proper kernel assumptions are not essential; there exist p.s.d.
kernels with kKM energies equivalent (up to constant) to
AD (26) and AA (27) for arbitrary associations A and zero-
diagonal distortions D, see Fig. 5.
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Fig. 5: Equivalence of kernel clustering methods: kernel K-means (kKM), average distortion (AD), average association
(AA) based on Roth et al. [89], see (30), (31). Equivalence of these methods in the general weighted case is discussed in [99,
Appendix A, Fig.33].

For example, for any affinity A in (27) the diagonal shift
trick of Roth et al. [89] generates the “kernel matrix”

K = A +A′

2
+ δ ⋅ I. (30)

For sufficiently large scalar δ matrix K is positive definite
yielding a proper discrete kernel k(Ip, Iq) ≡ Kpq

k(Ip, Iq) ∶ χ × χ→R

for finite set χ = {Ip∣p ∈ Ω}. It is easy to check that kKM
energy (22) with kernel k ≡ K in (30) is equivalent to AA
energy (27) with affinity A, up to a constant. Indeed, for any
indicator X ∈ {0,1}∣Ω∣ we have X ′X = 1′X implying

X ′KX
1′X

= X ′AX

2(1′X) +
X ′A′X

2(1′X) + δ
X ′X

1′X
= X

′AX

1′X
+ δ.

Also, Section 4.1 uses eigen decomposition of K to con-
struct an explicit finite-dimensional Euclidean embedding6

φp ∈ R∣Ω∣ satisfying isometry (20) for any p.d. discrete ker-
nel k ≡ K. Minimizing kKM energy (18) over such embed-
ding isometric to K in (30) is equivalent to optimizing (22)
and, therefore, (27).

6 Mercer’s theorem is a similar eigen decomposition for continu-
ous p.d. kernels k(x, y) giving infinite-dimensional Hilbert embedding
φ(x). Discrete kernel embedding φp ≡ φ(Ip) in Sec. 4.1 (60) has fi-
nite dimension ∣Ω∣, which is still much higher than the dimension of
points Ip, e.g. R3 for colors. Sec. 4.1 also shows lower dimensional
embeddings φ̃p approximating isometry (20).

Since average distortion energy (26) for arbitrary D is
equivalent to average association for A = −D

2
, it can also be

converted to kKM with a proper kernel [89]. Using the cor-
responding kernel matrix (30) and (20) it is easy to derive
Hilbertian distortion (metric) equivalent to original distor-
tions D

∥Ip − Iq∥2k ∶=
D +D′

2
+ 2δ(1 ⋅ 1′ − I). (31)

For simplicity and without loss of generality, the rest of
the paper assumes symmetric affinities A = A′ since non-s-

ymmetric ones can be equivalently replaced by A+A′

2
. How-

ever, we do not assume positive definiteness and discuss di-
agonal shifts, if needed.

Weighted kKM and weighted AA: Weighted K-means
[39] is a common extension of KM techniques incorporating
some given point weights w = {wp∣p ∈ Ω}. In the context of
embedded points φp it corresponds to weighted kKM itera-
tively minimizing the weighted version of the mixed objec-
tive in (16)

Fw(S,m) ∶= ∑
k

∑
p∈Sk

wp∥φp −mk∥2. (32)

Optimal segment centers mk are now weighted means

µwSk = ∑q∈Sk wqφq
∑q∈Sk wq

≡ φWSk

w′Sk
(33)
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where the matrix formulation has weights represented by
column vectorw ∈R∣Ω∣ and diagonal matrixW ∶= diag(w).
Assuming a finite dimensional data embedding φp ∈ Rm
this formulation uses embedding matrix φ ∶= [φp] with col-
umn vectors φp. This notation implies two simple identities
used in (33)

∑
q∈Sk

wq ≡ w′Sk and ∑
q∈Sk

wqφp ≡ φWSk. (34)

Inserting weighted means (33) into mixed objective (32) pro-
duces a pairwise energy formulation for weighted kKM sim-
ilar to (22)

Fw(S) ∶= ∑
k

∑
p∈Sk

wp∥φp − µwSk∥
2 (35)

c= −∑
k

∑pq∈Sk wpwqKpq
∑p∈Sk wp

(36)

≡ −∑
k

Sk
′
W KWSk

w′Sk

where p.s.d kernel matrix K = φ′φ corresponds to the dot
products in the embedding space, i.e. Kpq = φ′pφq .

Replacing the p.s.d. kernel with an arbitrary affinity ma-
trixA defines a weighted AA objective generalizing (27) and
(29)

Ewaa(S) ∶= −∑
k

Sk
′
WAWSk

w′Sk
. (37)

Weighted AD can also be defined. Equivalence of kKM, AA,
and AD in the general weighted case is discussed in [99,
Appendix A].

Other kernel clustering criteria: Besides AA there are
many other standard kernel clustering criteria defined by
affinity matricesA = [Apq]. For example, Average Cut (AC)

Eac(S) ∶=∑
k

assoc(Sk, S̄k)
∣Sk ∣ ≡ ∑

k

Sk
′
A(1 − Sk)
1′Sk

= ∑
k

Sk
′(D −A)Sk
1′Sk

(38)

where D ∶= diag(d) is a degree matrix defined by node
degrees vector d ∶= A1. The formulation on the last line
(38) comes from the following identity valid for Boolean
X ∈ {0,1}∣Ω∣

X ′DX =X ′d.

Normalized Cut (NC) [94] in (39) is another well-known
kernel clustering criterion. Due to popularity of NC we dis-
cuss it and its relation to other kernel clustering criteria in a
dedicated Section 2.3.

Kernel selection issues: One of the practically impor-
tant problems in kernel clustering is selection of the kernel
or its bandwidth. It is known [69] that for a common class
of kernels (e.g. popular Gaussian kernel), NC (41) and AC
(38), AA (29) and kKM (22) have various density biases.

In particular, AA and kKM with a small bandwidth isolate
density modes [94] while AC and NC separate isolated data
points [69]. Zelnik-Manor and Perona [113] discuss other
related biases in NC. In practice the bandwidth choice is a
trade-off between the prominence of the density biases for
small bandwidths and lack of non-linear separation for large
bandwidths. Instead of fitting a single bandwidth value, one
can employ adaptive weights [69] or adaptive kernel band-
widths [113,69], e.g. onK-nearest neighbor (KNN ) graphs,
to correct the density biases while keeping non-linearity of
the decision boundary. Interestingly, in this case objectives
NC, AC, kKM and AA become equivalent [69].

2.2.3 Pairwise vs. pointwise distortions

Equivalence of kKM to pairwise distortion criterion in (26)
helps to juxtapose kernel K-means with probabilistic K-means
(Sec.2.2.1) from one more point of view. Both methods gen-
eralize the basic K-means (6), (10) by replacing the Eu-
clidean metric with a more general distortion measure ∥∥d.
While pKM uses “pointwise” formulation (13) where ∥∥d
measures distortion between a point and a model, kKM uses
“pairwise” formulation (21) where ∥∥d = ∥∥2k measures dis-
tortion between pairs of points.

These two different formulations are equivalent for Eu-
clidean distortion (i.e. basic K-means), but the pairwise ap-
proach is strictly stronger than the pointwise version using
the same Hilbertian distortion ∥∥d = ∥∥2k in non-Euclidean
cases [99, Appendix B]. The corresponding pointwise ap-
proach is often called weak kernel K-means. Interestingly,
weak kKM with standard Gaussian kernel can be seen as K-
modes [92], see Fig. 3(g), which is closely related to popu-
lar mean-shift clustering [29], see [99, Appendix B]. An ex-
tended version of Table 3 including weighted KM and weak
kKM is given in [99, Fig.34].

2.3 NC objective and its relation to AA, AC, and kKM

Section 2.2.2 has already discussed kKM and many related
kernel clustering criteria based on specified affinities A =
[Apq]. This section is focused on a related kernel cluster-
ing method, Normalized Cut (NC) [94]. Shi and Malik [94]
also popularized kernel clustering optimization via spectral
relaxation, which is different from iterative K-means algo-
rithms (23) (24). Note that there are many other popular
optimization methods for different clustering energies using
pairwise affinities [30,51,106,57,47], which are outside the
scope of this work.
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The Normalized Cut (NC) objective [94] is defined as

Enc(S) ∶= −∑
k

assoc(Sk, Sk)
assoc(Ω,Sk)

≡ −∑
k

Sk
′
ASk

1′ASk
c= ∑

k

Sk
′
A(1 − Sk)
1′ASk

(39)

where association (28) is defined by a given affinity matrix
A. The matrix formulations above shows that the difference
between NC and AA (29) or AC (38) is in the normaliza-
tion. In fact, normalization by 1′ASk is chosen specifically
to make normalized average association equivalent to nor-
malized cut, the last two expressions in (39). In contrast, AA
and AC are distinct objectives normalized by 1′Sk ≡ ∣Sk ∣,
which is k-th segment’s size or cardinality. NC (39) normal-
izes by weighted cardinality. Indeed, using d ∶= A′1

1′ASk ≡ d′Sk ≡ ∑
p∈Sk

dp

where weights d = {dp∣p ∈ Ω} are node degrees

dp ∶= ∑
q∈Ω

Apq. (40)

For shortness, NC objective will be formatted like (29)

Enc(S) ≡ −∑
k

Sk
′
ASk

d′Sk
. (41)

It is known [69] that affinities such that dp ≈ const,
e.g. on K-nearest neighbor (KNN ) graphs, remove various
density biases in kernel clustering. In this case objectives
NC (41), AC (38), and AA (29) become equivalent. More
generally, Bach & Jordan [6], Dhillon et al. [35] showed
that NC objective can always be reduced to weighted AA
or kKM with specific weights and affinities.

Our matrix notation makes equivalence between NC (41)
and weighted AA (37) straightforward. Indeed, objective (41)
with A coincides with (37) for weights w and affinity Ã

w = d = A′1 and Ã =W −1AW −1. (42)

The weighted version of kKM procedure (24) [99, Appendix
A] minimizes weighted AA (37) only for p.s.d. affinities, but
positive definiteness of A is not critical. For example, an
extension of the diagonal shift (30) [89] can convert NC (41)
with arbitrary (symmetric) A to an equivalent NC objective
with p.s.d. affinity

K = A + δ ⋅D (43)

using degree matrix D ∶= diag(d) ≡ W and sufficiently
large δ. Indeed, for indicatorsX ∈ {0,1}∣Ω∣ we haveX ′DX =
d′X and

X ′KX
d′X

= X
′AX

d′X
+ δX

′DX

d′X
= X

′AX

d′X
+ δ.

Positive definiteK (43) implies positive definite affinity (42)
of weighted AA

K̃ =D−1KD−1 = D−1AD−1 + δD−1. (44)

The weighted version of kKM procedure (24) for this p.d.
kernel [36] greedily optimizes NC objective (41) for any
(symmetric) A.

2.4 Optimization methods for kernel clustering

As discussed in the previous section, both NC and AC can
be reduced to weighted AA. Thus, all of these objectives can
be optimized by basic kernel K-means procedure (8,24) or
its weighted variant. However, there are many other stan-
dard methods for approximate optimization of NP-hard ker-
nel clustering energies.

Spectral relaxation: Shi, Malik, and Yu [94,110] popu-
larized spectral relaxation methods in the context of normal-
ized cuts. Such methods also apply to AA and other prob-
lems [94]. For example, similarly to [110] one can rewrite
AA energy (27) as

Eaa(S) = − tr(Z ′AZ) for Z ∶=
⎡⎢⎢⎢⎣
. . . ,

Sk√
∣Sk ∣

, . . .
⎤⎥⎥⎥⎦

where Z is a ∣Ω∣×K matrix of normalized indicator vectors
Sk. Orthogonality (Si)′Sj = 0 implies Z ′Z = IK where
IK is an identity matrix of size K × K. Minimization of
the trace energy above with relaxed Z constrained to a “unit
sphere” Z ′Z = IK is a simple representative example of
spectral relaxation in the context of AA. This relaxed trace
optimization is a generalization of Rayleigh quotient prob-
lem that has an exact closed form solution in terms of K
largest eigenvectors for matrix A. This approach extends to
general multi-label weighted AA and related graph cluster-
ing problems, e.g. AC and NC [94,110]. The main compu-
tational difficulties for spectral relaxation methods are ex-
plicit eigen decomposition for large matrices and integrality
gap - there is a final heuristics-based discretization step for
extracting an integer solution for the original combinatorial
problem from an optimal relaxed solution. For example, one
basic discretization heuristic is to run K-means over the row-
vectors of the optimal relaxed Z.

Fuzzy kernel k-means: Buhmann et al. [48,89] address
the general AD and AA energies via mean-field approxima-
tion. They derive an iterative algorithm that can be seen as a
soft or fuzzy version7 of kKM procedure (24). In particular,
at current segments Skt they compute unary “potentials”

Ukp,t = Skt
′KSkt

∣Skt ∣2
− 2

1p
′KSkt
∣Skt ∣

(45)

7 Similar to fuzzy K-means in [67,38,88] if extended to kKM.
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E(S)

at(S)

St St+1

(I)

(II)

at+1(S)

Fig. 6: Illustration of the general bound optimization pro-
cedure: Iteration t of optimizing function E(S) using auxil-
iary functions (bounds) at(S). Step I minimizes at(S). Step
II computes the next bound at+1(S).

where Ukp,t is a penalty for assigning label k to pixel p iden-
tical to the expression evaluated in (24). But, instead of up-
dating point labels according to the lowest penalty Sp,t+1 =
arg mink U

k
p,t as in (24), the updates in [48] use soft-min

operation based on temperature parameter T

Skp,t+1 =
exp(−U

k
p,t

T
)

∑l exp(−U
l
p,t

T
)

(46)

where soft assignments Skp ∈ [0,1] define probability distri-
butions (Skp ∣1 ≤ k ≤ K) ∈ ∆K over labels, see the “alter-
native” side of Table 1. As T → 0 soft-min (46) converges
to binary indicators Skp ∈ {0,1} and distributions over la-
bels become vertices of simplex ∆K . That is, soft-min (46)
reduces to “hard-min” Sp,t+1 = arg mink U

k
p,t in (24).

Handling extra constraints: Some efforts to combine
kernel clustering and regularization were made before us.
For example, to combine kKM or NC objectives with Potts
regularization [60] normalizes the corresponding pairwise
constraints by cluster sizes. This alters the Potts model to fit
the problem to a standard trace-based formulation. In con-
trast, we address joint optimization via new bounds for the
kernel clustering terms.

Adding non-homogeneous linear constraints into spec-
tral relaxation techniques also requires approximations [111]
or model modifications [108]. Exact optimization for the
relaxed quadratic ratios (including NC) with arbitrary lin-
ear equality constraints is possible by solving a sequence of
spectral problems [40]. To incorporate must-link and cannot-
link constraints, [26] reformulated normalized cut and solved
a different eigen problem .

at(S)

St St+1

(I)

(II)

at+1(S)
F(S)

Fig. 7: K-means as linear bound optimization: As obvious
from (51), the bound at(S) in Theorem 1 is a unary function
of S. KM procedures (23,24) correspond to optimization of
linear auxiliary functions at(S) for KM objectives. Opti-
mum St+1 is finite since optimization is over Sk ∈ {0,1}∣Ω∣.

3 Kernel Bounds

Our bound optimization approach allows to combine many
standard kernel clustering objectives and any regularization
terms with existing solvers. We interpret kernel clustering
objectives as high-order energy terms and approximate them
by linear upper bounds during optimization.

First, we review the general bound optimization princi-
ple and present basic K-means as an example. Section 3.2
derives kernel bounds for standard kernel clustering objec-
tives. Without loss of generality, we assume symmetric affini-
ties A = A′ since non-symmetric ones can be equivalently
replaced by A+A′

2
, e.g. see (30) in Sec.2.2.2. Positive def-

initeness of A is not assumed and diagonal shifts are dis-
cussed when needed. Move-making bound optimization for
energy (1) is discussed in Section 3.3.

3.1 Bound optimization and K-means

In general, bound optimizers are iterative algorithms that
optimize auxiliary functions (upper bounds) for a given en-
ergy E(S) assuming that these auxiliary functions are more
tractable than the original difficult optimization problem [61,
77,10,96]. Let t be a current iteration index. Then at(S) is
an auxiliary function of E(S) at current solution St if

E(S) ≤ at(S) ∀S (47a)

E(St) = at(St). (47b)

The auxiliary function is minimized at each iteration t (Fig. 6)

St+1 = arg min
S
at(S). (48)
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objective matrix formulation concave relaxation K and w kernel bound
EA(S) e(X) in∑k e(S

k) Ìe(X) (53) in Lemma 1 for EA(S) at St

AA (29) −X
′AX
1′X

−
X′(δI+A)X

1′X
K = δI +A, w = 1

AC (38) X′(D−A)X
1′X

−
X′(δI+A−D)X

1′X
K = δI +A −D, w = 1 ∑k ∇Ìe(Skt )

′ Sk + const

for ∇Ìe in (54)

NC (41) −X
′AX
d′X

−
X′(δD+A)X

d′X
K = δD +A, w = d

Table 4: Kernel bounds for different kernel clustering objectives EA(S). The second column shows formulations of these
objectives EA(S) ≡ ∑k e(Sk) using functions e over segment indicator vectors Sk ∈ {0,1}∣Ω∣. The last column gives a
unary (linear) upper bound for EA(S) at St based on the first-order Taylor approximation of concave relaxation function
Ìe ∶RΩ →R1 (53).

This procedure iteratively decreases function E(S) since

E(St+1) ≤ at(St+1) ≤ at(St) = E(St).

We show that standard KM procedures (23), (24) cor-
respond to bound optimization for K-means objective (18).
Note that variablesmk in mixed objective F (S,m) (16) can
be seen as relaxations of segment means µSk (17) in single-
variable KM objective F (S) (18) since

µSk = arg min
mk
∑
p∈Sk

∥φp −mk∥2

and F (S) = min
m

F (S,m). (49)

Theorem 1 (bound for KM). Standard iterative K-means
procedures (23,24) are bound optimization methods for K-
means objectives F (S) (18,22) using auxiliary function

at(S) = F (S,µt) (50)

at any current segmentation St = {Skt } with means µt =
{µSkt }.

Proof. Equation (49) implies at(S) ≥ F (S). Since at(St) =
F (St) then at(S) is an auxiliary function for F (S). Re-
segmentation step (23) gives optimal segments St+1 mini-
mizing the bound at(S). The re-centering step minimizing
F (St+1,m) for fixed segments gives means µt+1 defining
bound at+1(S) for the next iteration. These re-segmentation
(I) and re-centering (II) steps are illustrated in Figs. 6,7.

Theorem 1 could be generalized to probabilistic K-means
[53] by stating that block-coordinate descent for distortion
clustering or ML model fitting (14) is a bound optimization
[96,97]. Theorem 1 can also be extended to pairwise and
weighted versions of KM. For example, one straightforward
extension is to show that Fw(S,µwt ) (32) with weighted

means µwt = {µw
Skt

} (33) is a bound for weighted KM ob-
jective Fw(S) (35) [99, Th.6]. Then, some bound for pair-
wise wkKM energy (36) can also be derived [99, Cor.1]. It
follows that bounds can be deduced for many kernel cluster-
ing criteria using their reductions to various forms of kKM
reviewed in Sec.2.2.2 or 2.3.

Alternatively, the next Section 3.2 follows a more direct
and intuitive approach to deriving kernel clustering bounds
motivated by the following simple observation. Note that
function at(S) in Theorem 1 is unary with respect to S.
Indeed, functions F (S,m) (16) or Fw(S,m) (32) can be
written in the form

F (S,m) ≡ ∑
k

∑
p

∥φp −mk∥2 Skp (51)

Fw(S,m) ≡ ∑
k

∑
p

wp∥φp −mk∥2 Skp (52)

highlighting the sum of unary terms for variables Skp . Thus,
bounds for KM or weighted KM objectives are modular (lin-
ear) function of S. This simple technical fact has useful im-
plications that were previously overlooked. For example,

– in the context of bound optimization, KM can be inte-
grated with many regularization potentials whose exist-
ing solvers can work with extra unary (linear) terms

– assuming real-valued relaxation of indicators Sk, linear-
ity of upper bound at(S) (50) implies that the bounded
function F (S) ∈ C1 (22) is concave, see Fig.7.

In Section 3.2 we confirm that many standard kernel clus-
tering objectives in Sections 2.2.2 and 2.3 have concave re-
laxations. Thus, their linear upper bounds easily follow from
the corresponding first-order Taylor expansions, see Figure 7
and Table 4.
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3.2 Kernel Bounds for AA, AC, and NC

The next lemma helps to find linear bounds for clustering
terms AA, AC, or NC in Table 4 (Theorem 2) and bounds
for our joint energy (1) in Corolary 1.

Lemma 1 (concave relaxation). Consider function Ìe ∶RΩ →
R1 defined by matrix K and vector w as

Ìe(X) ∶= −X
′KX
w′X

. (53)

Function Ìe(X) is concave over region w′X > 0 assuming
(symmetric) matrix K is positive semi-definite (see Fig. 8).

Proof. Lemma 1 follows from the following expression for
the Hessian of function Ìe for symmetric K
∇∇Ìe

2
= − K

w′X
+ KXw

′ +wX ′K
(w′X)2 − wX

′KXw′

(w′X)3

≡ − 1

w′X
(I − Xw

′

w′X
)
′

K(I − Xw
′

w′X
)

which is negative semi-definite for w′X > 0 for p.s.d. K.

The first-order Taylor expansion at current solution Xt

Tt(X) ∶= Ìe(Xt) + ∇Ìe(Xt)′ (X −Xt)

is a bound for the concave function Ìe(X) (53). Its gradient8

∇Ìe(Xt) = w
Xt

′KXt

(w′Xt)2
− KXt

2

w′Xt
(54)

gives linear bound Tt(X) for concave function Ìe(X) at Xt

Tt(X) ≡ ∇Ìe(Xt)′X. (55)

As shown in the second column of Table 4, common ker-
nel clustering objectives defined by affinity matrixA such as
AA (29), AC (38), and NC (41) have the form

EA(S) = ∑
k

e(Sk)

with function e(X) as in (53) from Lemma 1. However, ar-
bitrary affinity A may not correspond to a positive semi-
definite K in (53) and e(X) may not be concave for X ∈
R∣Ω∣. However, the diagonal shift trick [89] in (30) works
here too. The third column in Table 4 shows concave func-
tion Ìe(X) that equals e(X) for any non-zero Boolean X ∈
{0,1}∣Ω∣, up to a constant. Indeed, for AA

Ìe(X) = −X
′(δI +A)X

1′X
= −X

′AX

1′X
− δ c= e(X)

8 Function Ìe and gradient∇Ìe are defined only at non-zero indicators
Xt where w′Xt > 0. We can formally extend Ìe to X = 0 and make
the bound Tt work for Ìe atXt = 0 with some supergradient. However,
Xt = 0 is not a problem in practice since it corresponds to an empty
segment.

Fig. 8: Example: concave function Ìe(X) = −X′X
1′X for X ∈

[0,1]2. Note that convexity/concavity of similar rational
functions with quadratic enumerator and linear denominator
is known in other optimization areas, e.g. [12, p.72] states
convexity of x2

y
for y > 0 and [7, exercise 3.14] states con-

vexity of (v
′X)2
w′X for w′X > 0.

sinceX ′X = 1′X for BooleanX . Clearly, δI+A is p.s.d. for
sufficiently large δ and Lemma 1 implies that the first-order
Taylor expansion Tt(X) (55) is a linear bound for concave
function Ìe(X). Equivalence between e and Ìe over Booleans
allows to use Tt(X) as a bound for e when optimizing over
indicators X . Function Ìe ∶ R∣Ω∣ → R1 can be described
as a concave relaxation of the high-order pseudo-boolean
function e ∶ {0,1}∣Ω∣ →R1.

Concave relaxation Ìe for AC in Table 4 follows from the
same diagonal shift δI as above. But NC requires diagonal
shift δD with degree matrix D = diag(d) as in (43). Indeed,

Ìe(X) = −X
′(δD +A)X
d′X

= −X
′AX

d′X
− δ c= e(X) (56)

since X ′DX ≡ X ′diag(d)X = d′X for any Boolean X .
Clearly, δD + A is p.s.d. for sufficiently large δ assuming
dp > 0 for all p ∈ Ω. Concave relaxations and the corre-
sponding Taylor-based bounds for EA(S) in Table 4 imply
the following theorem.

Theorem 2 (kernel bound for EA). For (symmetric) affin-
ity matrixA and current solution St the following is a unary
(linear) bound for any kernel clustering energy EA(S) in
Table 4

at(S) = ∑
k

∇Ìe(Skt )′ Sk (57)

where Ìe and ∇Ìe are defined in (53), (54) and δ is large
enough so that the corresponding K in Table 4 is positive
semi-definite.

Similarly to Theorem 1, optimization of our linear kernel
bound in Theorem 2 can be related to kKM updates (24).
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Indeed, (57) can be written in the form

at(S) ≡ ∑
k

∑
p

1′p∇Ìe(Skt )Skp = ∑
p

(∑
k

1′p∇Ìe(Skt )Skp)

that breakes into the sum of linear terms for each p

∑
k

1′p∇Ìe(Skt )Skp . (58)

Each of these can be optimized independently over proba-
bility simplex ∑k Skp = 1. The optimal solution for (58) is
always at one of K corners of the simplex corresponding
to label k with the lowest potential 1′p∇Ìe(Skt ). For example,
assuming AA objective (29) withw = 1 andA = K, then (54)
implies optimal k as in the “hard” kKM update (24). Inter-
estingly, combining (58) with an “entropy barrier” pushing
the solution away from the simplex corners

∑
k

1′p∇Ìe(Skt )Skp + T ⋅ ∑
k

Skp logSkp

results in the optimal “soft” kKM update (46) as in [48].
In their mean-field approach, the objective above comes as
KL divergence between Gibbs distributions for the exact and
approximate AA energies. Note 1′p∇Ìe(Skt ) ≡ Ukp,t, see (45).

For the joint energy (1) combining kernel clutsering and
regularization terms we can use the following bounds.

Corollary 1 (kernel bound for (1)). For any (symmetric)
affinity matrix A and any current solution St the following
is an auxiliary function for energy (1) with any clustering
term EA(S) from Tab.4

at(S) = ∑
k

∇Ìe(Skt )′ Sk + γ ∑
c∈F

Ec(Sc) (59)

where Ìe and ∇Ìe are defined in (53), (54) and δ is large
enough so that the corresponding K in Table 4 is positive
semi-definite.

3.3 Move-making algorithms

Combination (59) of regularization potentials with a unary
(linear) bound ∑k∇Ìe(Skt )′ Sk for high-order term EA(S)
can be optimized with many standard discrete or continuous
multi-label methods including graph cuts [16,49], message
passing [55], LP relaxations [107], or well-known continu-
ous convex formulations [23,24,32]. We focus on MRF reg-
ularizers (see Sec.2.1) commonly addressed by graph cuts
[16]. We discuss some details of kernel bound optimization
technique using such methods.

Step I of the bound optimization algorithm (Fig.6) us-
ing auxiliary function at(S) (59) for energy E(S) (1) with
regularization potentials reviewed in Sec.2.1 can be done
via move-making methods [16,54,33]. Step II requires re-
evaluation of the first term in (59), i.e. the kernel bound for

Algorithm 1: α-Expansion for Kernel Cut
Input : Affinity matrixA of size ∣Ω∣ × ∣Ω∣;

Initial labeling S1
0 , ..., S

K
0

Output: S1, ..., SK : partition of the set Ω
Find p.s.d. matrix K as in Table 4. Set t ∶= 0;
while not converged do

Set at(S) to be kernel bound (59) at current partition St;
for each label α ∈ L = {1, ...,K} do

Find St ∶= argminat(S) within one α expansion of
St;

end
Set t ∶= t + 1;

end
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(a) Versions of Kernel Cut

Compare against # of wins p-value†

α-expan-
sion αβ-swap 135/200 10−6

α-expan-
sion

α-expan-
sion∗ 182/200‡ 10−34‡

† The probability to exceed the given number of wins by random chance.
‡ The algorithm stopped due to time limit (may cause incorrect number of wins).

(b) BSDS500 training dataset

Fig. 9: Typical energy evolution wrt different moves and fre-
quency of bound updates. α-expansion updates the bound
after a round of expansions, α-expansion* updates the
bound after each expansion move. Initialization is a regular
5×5 grid of patches.

EA. Estimation of gradients ∇Ìe(Skt ) in (54) has complexity
O(K ∣Ω∣2).

Even though the global optimum of at at step I (Fig.6)
is not guaranteed for general potentials Ec, it suffices to de-
crease the bound in order to decrease the energy, i.e. (47a)
and (47b) imply

at(St+1) ≤ at(St) ⇒ E(St+1) ≤ E(St).

For example, Algorithm 1 shows a version of our kernel
cut algorithm using α-expansion [16] for decreasing bound
at(S) in (59). Other moves are also possible, for example
αβ-swap.

In general, tighter bounds work better. Thus, we do not
run iterative move-making algorithms for bound at until con-
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vergence before re-estimating at+1. Instead, one can reesti-
mate the bound either after each move or after a certain num-
ber of moves. One should decide the order of iterative move
making and bound evaluation. In the case of α-expansion,
there are at least three options: updating the bound after a
single expansion step, or after a single expansion loop, or
after the convergence of α-expansion. More frequent bound
recalculation slows down the algorithm, but makes the bound
tighter. The particular choice generally depends on the trade-
off between the speed and solution quality. However, in our
experiments more frequent update does not always improve
the energy, see Fig.9. We recommend updating the bound af-
ter a single loop of expansions, see Alg.1. We also evaluated
a swap move version of our kernel cut method with bound
re-estimation after a complete αβ-swaps loop, see Fig.9.

4 Data Embeddings and Spectral Bounds

This section shows a different bound optimization approach
to kernel clustering, see Table 5 and Theorem 3, and joint
regularization energy (1), see Corollary 2. In contrast to the
bounds explicitly using affinity A or kernel matrices K in
Sec.3.2, the new approach is based on explicit use of iso-
metric data embeddings φ, see Sec. 2.2.2. While the general
Mercer theorem guarantees existence of such possibly infi-
nite dimensional Hilbert space embedding, we show finite
dimensional Euclidean embedding

φ ∶= [φp] where {φp∣p ∈ Ω} ⊂ R∣Ω∣

with exact isometry (19,20) to kernels K in Table 4 and
lower dimensional embeddings

φ̃ ∶= [φ̃p] where {φ̃p∣p ∈ Ω} ⊂ Rm for m ≤ ∣Ω∣

that can approximate the same isometry with any accuracy.
The embeddings use eigen decompositions of the kernels.

Explicit embeddings allow to formulate exact or approx-
imate spectral bounds for standard kernel clustering objec-
tives like AA, AC, NC. This approach is very closely related
to spectral relaxation, see Sec. 4.3. For example, optimiza-
tion of our approximate spectral bounds for m = K is simi-
lar to standard discretization heuristics using K-means over
eigenvectors [94]. Our bound optimization framework pro-
vides justification for such heuristics. Moreover, our spectral
bounds also allow to optimize joint energy (1) combing ker-
nel clustering objectives with common regularization terms.

Spectral bound is a useful alternative to kernel bound in
Sec. 3.2. Their complexity and other numerical properties
are different. In particular, spectral bound optimization with
lower dimensional Euclidean embeddings φ̃ for m ≪ ∣Ω∣ is
often less sensitive to local minima. This may lead to better
solutions, even though such embeddings φ̃ are only approx-
imately isometric to given pairwise affinities. For m = ∣Ω∣,

Fig. 10: Interpreting our linear bounds for EA term in (1)
via K-means: optimization of the spectral bound (alone) is
equivalent to K-means algorithm over approximately iso-
metric data embeddings in Rm for m ≤ ∣Ω∣, see Sec. 4. As
m approaches ∣Ω∣, the isometry becomes more accurate and
our approximate spectral bound for EA reduces to the exact
kernel bound. While relations between EA and K-means
were known for m =K [94] (as a heuristic, see Sec.4.3) and
m = ∣Ω ∣ [89,6,35] (as energy equivalence), we establish it
in a new bound optimization context essential for our work.

the spectral bound is mathematically equivalent to the ker-
nel bound, but their numerical representations are different.
Figure 10 summarizes the relationship between our (kernel
and spectral) bounds for kernel clustering objective EA(S).

4.1 Exact and approximate embeddings φ for kKM

This section uses some standard methodology [31] to build
the finite-dimensional embedding φp ≡ φ(Ip) with exact or
approximate isometry (19,20) to any given positive definite
kernel k over finite data set {Ip∣p ∈ Ω}. As discussed in
Sec. 2.2.2, kKM and other kernel clustering methods are typ-
ically defined by affinities/kernels k and energy (22) rather
than by high-dimensional embeddings φ with basic KM for-
mulation (18). Nevertheless, data embeddings φp could be
useful and some clustering techniques explicitly construct
them [94,80,89,8,6,112]. In particular, if dimensionality of
the embedding space is relatively low then the basic iterative
KM procedure (23) minimizing (18) could be more efficient
than its kernel variant (24) for quadratic formulation (22).
Even when working with a given kernel k it may be algorith-
mically beneficial to build the corresponding isometric em-
bedding φ. Below we discuss finite-dimensional Euclidean
embeddings inRm (m ≤ ∣Ω∣) allowing to approximate stan-
dard kernel clustering via basic KM.

First, we show an exact Euclidean embedding isometric
to a given kernel. Any finite data set {Ip∣p ∈ Ω} and any
given kernel k define a positive definite kernel matrix9

Kpq = k(Ip, Iq)

9 If k is given as a continuous kernel k(x, y) ∶ RN ×RN → R

matrix K is its restriction to finite data set {Ip∣p ∈ Ω} ⊂RN .
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(a) decomposition K = V ′ΛV

(b) decomposition K̃ = (Vm)′ΛVm for m < ∣Ω∣

Fig. 11: Eigen decompositions for kernel matrix K (a) and
its rankm approximation K̃ (b) minimizing Frobenius errors
(61) [31]. Decompositions (a,b) give explicit embeddings
(60,63) isometric to the kernels, as in the Mercer theorem.
One specific example for the Gaussian kernel is in Fig.12.

of size ∣Ω∣ × ∣Ω∣. The eigen decomposition of this matrix

K = V ′ΛV

involves diagonal matrix Λ with non-negative eigenvalues
and orthogonal matrix V whose rows are eigenvectors, see
Fig.11(a). Non-negativity of the eigenvalues is important for
obtaining decomposition Λ =

√
Λ ⋅

√
Λ allowing us to define

the following Euclidean space embedding

φp ∶=
√
ΛVp ∈R∣Ω∣ (60)

where Vp are column of V , see Fig.11(a). This embedding
satisfies isometry (19,20) since

⟨φp, φq⟩ = (
√
ΛVp)′(

√
ΛVq) = Kpq = k(Ip, Iq).

Note that (60) defines a simple finite dimensional em-
bedding φp ≡ φ(Ip) only for subset of points {Ip∣p ∈ Ω}
in RN based on a discrete kernel, i.e. matrix Kpq . In con-
trast, Mercer’s theorem should produce a more general infi-
nite dimensional Hilbert embedding φ(x) for any x ∈ RN
by extending the eigen decomposition to continuous kernels
k(x, y). In either case, however, the embedding space di-
mensionality is much higher than the original data space.
For example, φp in (60) has dimension ∣Ω∣, which is much
larger than the dimension of data Ip, e.g. 3 for RGB colors.

(a) data {Ip∣p ∈ Ω} (b) Gaussian kernel matrix K

(c) 2D embedding φ̃(Ip) (d) 3D embedding φ̃(Ip)

Fig. 12: Low-dimensional Euclidean embeddings (63) for
m = 2 and m = 3 in (c,d) are approximately isometric to
a given affinity matrix (b) over the data points in (a). The
approximation error (62) decreases for largerm. While gen-
erated by standard MDS methodology [31], it is intuitive to
call embeddings φ in (60) and (63) as (exact or approximate)
isometry eigenmap or eigen isomap.

Embedding (60) satisfying isometry (19,20) is not unique.
For example, any decomposition K = G′G, e.g. Cholesky
[43], defines a mapping φGp ∶= Gp with desired properties.
Also, rotational matricesR generate a class of isometric em-
beddings φRp ∶= Rφp.

It is easy to build lower dimensional embeddings by
weakening the exact isometry requirements (19,20) follow-
ing the standard multi-dimensional scaling (MDS) method-
ology [31], as detailed below. Consider a given rankm < ∣Ω∣
approximation K̃ for kernel matrix K minimizing Frobenius
norm errors [31]

∣∣K − K̃∣∣F ∶= ∑
pq∈Ω

(Kpq − K̃pq)2. (61)

It is well known [31,43] that the minimum Frobenius error
is achieved by

K̃ = (V m)′ΛmV m

where V m is a submatrix of V including m rows corre-
sponding to the largest m eignenvalues of K and Λm is the
diagonal matrix of these eigenvalues, see Fig.11(b). The cor-
responding minimum Frobenius error is given by the norm
of zeroed out eigenvalues

∣∣K − K̃∣∣F =
√
λ2m+1 + ⋅ ⋅ ⋅ + λ2∣Ω∣. (62)
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It is easy to check that lower dimensional embedding

φ̃p ∶=
√
ΛmV mp ∈Rm (63)

is isometric with respect to approximating kernel K̃, that is

⟨φ̃p, φ̃q⟩ = K̃pq ≈ Kpq. (64)

Fig. 12 shows examples of low-dimensional approximate
isometry embeddings (63) for a Gaussian kernel. Note that
φ̃p ∈Rm (63) can be obtained from φp ∈R∣Ω∣ (60) by select-
ing coordinates corresponding to dimensions of the largest
m eigenvalues.

According to (62) lower dimensional embedding φ̃p in
(63) is nearly-isometric to kernel matrix K if the ignored
dimensions have sufficiently small eigenvalues. Then (63)
may allow efficient approximation of kernel K-means. For
example, if sufficiently many eigenvalues are close to zero
then a small rank m approximation K̂ will be sufficiently
accurate. In this case, we can use a basic iterative K-means
procedure directly inRm withO(∣Ω∣m) complexity of each
iteration. In contrast, each iteration of the standard kernel K-
means (22) is O(∣Ω∣2) in general10.

There is a different way to justify approximate low-
dimensional embedding φ̃p ignoring small eigenvalue di-
mensions in φp. The objective in (22) for exact kernel K
is equivalent to the basic K-means (16) over points φp (60).
The latter can be shown to be equivalent to (probabilistic) K-
means (13) over columns Vp in orthonormal matrix V using
weighted distortion measure

∣∣Vp − µ∣∣2Λ ∶=
∣Ω∣

∑
i=1
λi(Vp[i] − µ[i])2 = ∣∣φp −

√
Λµ∣∣2

where index [i] specifies coordinates of the column vec-
tors. Thus, a good approximation is achieved when ignor-
ing coordinates for small enough eigenvalues contributing
low weight in the distortion above. This is equivalent to K-
means (16) over points (63).

4.2 Spectral Bounds for AA, AC, and NC

The last Section showed that kKM clustering with given
p.s.d. kernel K can be approximated by basic KM over low-
dimensional Euclidean embedding φ̃ ∈ Rm (63) with ap-
proximate isometry to K (64). Below we use equivalence
of standard kernel clustering criteria to kKM, as discussed
in Sections 2.2.2 and 2.3, to derive the corresponding low-
dimensional embeddings for AA, AC, NC. Then, equiva-
lence of KM to bound optimization (Theorem 1) allows to
formulate our approximate spectral bounds for the kernel
clustering and joint energy (1). The results of this Section

10 Without KNN or other special kernel accelerations.

are summarized in Table 5. For simplicity, assume symmet-
ric affinity matrixA. If not, equivalently replaceA by A+A′

2
.

Average association (AA): Diagonal shift K = δI + A
in (30) converts AA (29) with A to equivalent kKM (22)
with p.d. kernel K. We seek rank-m approximation K̃ min-
imizing Frobenius error ∣∣K − K̃∣∣F . Provided eigen decom-
position A = V ′ΛV , equation (63) gives low-dimensional
embedding (also in Tab. 5)

φ̃p =
√
δIm +ΛmV mp (65)

corresponding to optimal approximation kernel K̃. It fol-
lows that KM (23) over this embedding approximates AA
objective (22). Note that the eigenvectors (rows of matrix V ,
Fig. 11) also solve the spectral relaxation for AA in Tab. 6.
However, ad hoc discretization by KM over points V Kp may
differ from the result for points (65).

Average cut (AC): As follows from objective (38) and
diagonal shift (30) [89], average cut clustering for affinity A
is equivalent to minimizing kKM objective with kernel K =
δI+A−D whereD is a diagonal matrix of node degrees dp =
∑qApq . Diagonal shift δI is needed to guarantee positive
definiteness of the kernel. Eigen decomposition for D −A =
V ′ΛV impliesK = V ′(δI−Λ)V . Then, (63) implies rank-m
approximate isometry embedding (also in Tab. 5)

φ̃p =
√
δIm −ΛmV mp (66)

using the same eigenvectors (rows of V ) that solve AC’s
spectral relaxation in Tab. 6. However, standard discretiza-
tion heuristic using KM over φ̃p = V Kp may differ from the
results for our approximate isometry embedding φ̃p (66) due
to different weighting.

Normalized cut (NC): According to [35] and a simple
derivation in Sec.2.3 normalized cut for affinity A is equiva-
lent to weighted kKM with kernel K = δD−1 +D−1AD−1

(44) and node weights wp = dp based on their degree.
Weighted kKM (36) can be interpreted as KM in the embed-
ding space with weights wp for each point φp as in (32,33).
The only issue is computingm-dimensional embeddings ap-
proximately isometric to K. Note that previously discussed
solution φ̃ in (63) uses eigen decomposition of matrix K to
minimize the sum of quadratic errors between Kpq and ap-
proximating kernel K̃pq = ⟨φ̃p, φ̃q⟩. This solution may still
be acceptable, but in the context of weighted points it seems
natural to minimize an alternative approximation measure
takingwp into account. For example, we can find rank-m ap-
proximate affinity matrix K̃minimizing the sum of weighted
squared errors

∑
pq∈Ω

wpwq(Kpq − K̃pq)2 = ∣∣D 1
2 (K − K̃)D 1

2 ∣∣F . (67)

Substituting K = δD−1 +D−1AD−1 gives an equivalent ob-
jective

∣∣D− 1
2 (δD +A)D− 1

2 −D 1
2 K̃D 1

2 ∣∣F .
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objective matrix formulation equivalent kKM (22,36) eigen decomposition embedding inRm, m ≤ ∣Ω∣ spectral bound
EA(S) e(X) in∑k e(S

k) as in [89,36] V ′ΛV = . . . with approx. isometry (64) for EA(S) at St

AA (29) −X
′AX
1′X

K = δI +A A φ̃p =
√
δIm +ΛmVmp (65)

F (S,µt) (51)
AC (38) X′(D−A)X

1′X
K = δI +A −D D −A φ̃p =

√
δIm −ΛmVmp (66) for points φ̃p

NC (41) −X
′AX
d′X

K = δD−1 +D−1AD−1 D− 1
2AD− 1

2 φ̃p =

√
δIm+Λm
dp

Vmp (70) Fw(S,µwt ) (52)

weighted, wp = dp for points φ̃p

Table 5: Spectral bounds for objectives EA(S). The third column shows p.d. kernel matrices K for the equivalent kKM
energy (22). Eigen decomposition for matrices in the forth column defines our Euclidean embedding φ̃p ∈Rm (fifth column)
isometric to K (64). Thus, K-means over φ̃p approximates kKM (22). Bounds for KM (last column) follow from Th. 1 where
µt = {µSkt } are means (17) and µwt = {µw

Skt
} are weighted means (33). Functions F (S,m) and Fw(S,m) are modular

(linear) w.r.t. S, see (51,52).

spectral relaxation [94] common discretization heuristic [105] (embedding & K-means)
AA Au = λu φ̃p ∶= UKp ≡ VKp ⇐ V ′ΛV = A

AC (D −A)u = λu φ̃p ∶= UKp ≡ VKp ⇐ V ′ΛV = D −A

NC (D −A)u = λDu φ̃p ∶= UKp ≡ [VKD− 1
2 ]rnp ⇐ V ′ΛV = D− 1

2AD− 1
2

Table 6: Spectral relaxation and discretization heuristics for objectives for kernel clustering objectives EA(S) for affinity
A. The corresponding degree matrix D is diagonal with elements dp ∶= ∑qApq . To extract integer labeling from the relaxed
solutions produced by the eigen systems (second column), spectral methods often apply basic KM to some ad hoc data
embedding φ̃ (last column) based on the first K unit eigenvectors u, the rows of matrix UK . While our main text discusses
some variants, the most basic idea [94,105] is to use the columns of UK as embedding φ̃p. For easier comparison, the last
column also shows equivalent representations of this embedding based on the same eigen decompositions V ′ΛV as those
used for our isometry eigenmaps in Tab. 5. In contrast, our embeddings are derived from justified approximations of the
original non-relaxed AA, AC, or NC objectives. Note that NC corresponds to a weighted case of K-means with data point
weights wp = dp [6,35], see (42) in Section 2.3.

Consider rank-mmatrix M̃ ∶=D 1
2 K̃D 1

2 as a new minimiza-
tion variable. Its optimal value (V m)′(δIm + Λm)V m fol-
lows from D− 1

2 (δD + A)D− 1
2 = V ′(δI + Λ)V for eigen

decomposition

D− 1
2AD− 1

2 ≡ V ′ΛV. (68)

Thus, optimal rank-m approximation kernel K̃ is

K̃ =D− 1
2 (V m)′(δIm +Λm)V mD− 1

2 . (69)

It is easy to check that m-dimensional embedding (also in
Tab. 5)

φ̃p =
¿
ÁÁÀδIm +Λm

dp
V mp (70)

is isometric to kernel K̃, that is ⟨φ̃p, φ̃q⟩ = K̃pq . Therefore,
weighted KM (32) over low-dimensional embedding φ̃p (70)
with weights wp = dp approximates NC objective (41).

Summary: The ideas above can be summarized as fol-
lows. Assume AA, AC, or NC objectives EA(S) with (sym-
metric) A. The third column in Table 5 shows kernels K for
equivalent kKM objectives F (S) (22,36). Following eigen-
map approach (Fig.11), we find rank-m approximate ker-
nel K̃ ≈ K minimizing Frobenius error ∥K̃ − K∥F (61) or
its weighted version (67) and deduce embeddings φ̃p ∈ Rm
(65), (66), (70) satisfying isometry

φ̃′pφ̃q = K̃pq ≈ Kpq.

Basic K-means objective F̃ (S,m) (16,32) for {φ̃p} is equiv-
alent to kKM energy F̃ (S) (22,36) for kernel K̃ ≈ K and,
therefore, approximates the original kernel clustering objec-
tive

F̃ (S,µS) c= F̃ (S) ≈ F (S) c= EA(S).

Theorem 1 gives unary (linear) bound F̃ (S,µt) (51,52) for
objective F̃ (S) (16,32). We refer to F̃ (S,µt) as a spectral
auxiliary function for approximate optimization of EA(S)
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(a) Gaussian for data in Fig. 12 (b) KNN for data in Fig. 12

(c) mPb kernel [4] for image (d) KNN kernel for image

Fig. 13: Spectrum of eigenvalues of typical kernel matri-
ces for synthetic data (top row) or real image color (bot-
tom row). This helps us to select approximate embedding
so as to have small approximation error (62). For example,
with fixed width gaussian kernel in (a), it suffices to select
a few top eigenvectors since the remaining eigenvalues are
negligible. Note that the spectrum elevates with increasing
diagonal shift δ in (65). In principle, we can find the opti-
mal shift for a given number of dimensions m to minimize
approximation error.

(last column in Table 5). We will also simply call F̃ (S,µt)
a spectral bound for EA, not to be confused with a similar
term used for matrix eigenvalues.

Theorem 3 (spectral bound forEA). For (symmetric) affin-
ity matrixA assume sufficiently large diagonal shift δ gener-
ating p.s.d. kernel K as in Table 5. Then, auxiliary function

ãt(S) = F̃ (S,µt) (71)

using F̃ (S,m) (51,52) with embedding {φ̃p} ⊂ Rm in
Tab. 5 is a unary (linear) bound for K-means energy F̃ (S)
(22,36) approximating objective EA(S) as m→ ∣Ω∣.

Form = ∣Ω∣ the spectral bounds (Tab.5) are algebraically
equivalent to our kernel bounds (Tab.4) since K̃ = K, see
(62). Yet, their numerical representation is different. For
m < ∣Ω∣ we obtain a range of approximate spectral bounds
since K̃ ≈ K and F̃ ≈ F . Figure 10 summarizes the relation
between our spectral and kernel bounds for EA.

Interestingly, Section 4.3 shows that optimization of our
spectral bounds for m = K is algorithmically similar to
the commonK-means discretization heuristic in spectral re-
laxation solutions for kernel clustering. Thus, our spectral
bound optimization can be seen as a principled formulation
justifying this heuristic post-processing step.

Fig. 14: For data and affinity matrix in Fig. 12, we run
weighted K-means with our approximate embedding. The
approximation errors ∣∣K − K̃∣∣2F /∣∣K∣∣2F for 3, 6, 10 and 50
dim. embedding are 58%, 41%, 27% and 3% respectively.
We compute weighted K-means energy (up to a const) and
normalized cuts energy for solution obtained at each itera-
tion. We observed that normalized cuts energy indeed tends
to decrease during iterations of K-means. Even 10 dim.
embedding gives good alignment between K-means energy
and normalized cuts energy. Higher dimensional embedding
gives better energy approximation, but not necessarily better
solution with lower energy.

Similarly to kernel bound in Section 3.2, spectral bound
is useful for optimizing joint energy (1). We can iteratively
minimize energy E(S) in (1) by applying bound optimiza-
tion approach to its spectral approximation

Ẽ(S) = F̃ (S) + γ ∑
c∈F

Ec(Sc) (72)

or its weighted spectral approximation

Ẽ(S) = F̃w(S) + γ ∑
c∈F

Ec(Sc). (73)

Corollary 2 (spectral bound for (1)). For any (symmet-
ric) affinity matrixA assume sufficiently large diagonal shift
δ generating p.s.d. kernel K as in Table 5. Then, auxiliary
function

ãt(S) = F̃ (S,µt) + γ ∑
c∈F

Ec(Sc) (74)

using F̃ (S,m) (51,52) with embedding {φ̃p} ⊂ Rm in
Tab. 5 is a bound for joint energy (72,73) approximating (1)
as m→ ∣Ω∣.

Approximation quality (62) depends on omitted eigen-
values λi for i > m. Representative examples in Fig.13
show that relatively few eigenvalues may dominate the oth-
ers. Thus, practically good approximation with small m
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Algorithm 2: α-Expansion for Spectral Cut
Input : Affinity matrixA of size ∣Ω∣ × ∣Ω∣;

Initial labeling S1
0 , ..., S

K
0

Output: S1, ..., SK : partition of the set Ω
Find top m eigenvalues/vectors Λm, Vm for a matrix in the
4th col. of Tab. 5 ;

Compute embedding {φ̃p} ⊂Rm for some δ and set t ∶= 0;
while not converged do

Set ãt(S) to be spectral bound (74) at current partition St;
for each label α ∈ L = {1, ...,K} do

Find St ∶= argmin ãt(S) within one α expansion of
St;

end
Set t ∶= t + 1;

end

is possible. Larger m are computationally expensive since
more eigenvalues/vectors are needed. Interestingly, smaller
m may give better optimization since K-means in higher-
dimensional spaces may be more sensitive to local minima.
Thus, spectral bound optimization for smaller m may find
solutions with lower energy, see Fig.14, even though the
quality of approximation is better for larger m.

Similarly to the kernel bound algorithms discussed in
Section 3.3 one can optimize the approximate spectral bound
(74) for energy (1) using standard algorithms for regulariza-
tion. This follows from the fact that the first term in (74) is
unary (linear). Algorithm 2 shows a representative (approx-
imate) bound optimization technique for (1) using move-
making algorithms [17]. Note that for γ = 0 (no regular-
ization terms) our bound optimization Algorithm 2 reduces
to basic K-means over approximate isometry embeddings
{φ̃p} ⊂ Rm similar but not identical to common discretiza-
tion heuristics in spectral relaxation methods.

Some extensions for optimization ideas in Sec. 3 and 4
are discussed in [99]. For example, diagonal shift δ can be
used to reduce Frobenius error (62). We also discuss pseudo-
bounds [96].

4.3 Relation to spectral clustering

Our approximation of kernel clustering such as NC via ba-
sic KM over low dimensional embeddings φ̃p is closely re-
lated to popular spectral clustering algorithms [94,80,8] us-
ing eigen decomposition for various combinations of kernel,
affinity, distortion, laplacian, or other matrices. Other meth-
ods also build low-dimensional Euclidean embeddings [80,
8,112] for basic KM using motivation different from isome-
try and approximation errors with respect to given affinities.
We are mainly interested in discussing relations to spectral
methods approximately optimizing kernel clustering criteria
such as AA, AC, and NC [94].

Many spectral relaxation methods also use various eigen
decompositions to build explicit data embeddings followed

by basic K-means. In particular, the smallest or largest eigen-
vectors for the (generalized) eigenvalue problems in Table 6
give well-known exact solutions for the relaxed problems. In
contrast to our approach, however, the final K-means stage
in spectral methods is often presented without justification
[94,105,4] as a heuristic for quantizing the relaxed continu-
ous solutions into a discrete labeling. It is commonly under-
stood that

“. . . there is nothing principled about using the K-
means algorithm in this step” (Sec. 8.4 in [105])

or that

“. . . K-means introduces additional unwarranted
assumptions.” (Sec. 4 in [110])

Also, typical spectral methods use K eigenvectors solving
the relaxed K-cluster problems followed by KM quantiza-
tion. In contrast, we choose the number of eigenvectors m
based on Frobenius error for isometry approximation (62).
Thus, the number m is independent from the predefined
number of clusters.

Below we juxtapose our approximate isometry low di-
mensional embeddings in Table 5 with embeddings used
for ad-hoc discretization by the standard spectral relaxation
methods in Table 6. While such embeddings are similar, they
are not identical. Thus, our Frobenius error argument offers
a justification and minor corrections for KM heuristics in
spectral methods, even though the corresponding method-
ologies are unrelated. More importantly, our bound formu-
lation allows integration of kernel clustering with additional
regularization constraints (1).

Embeddings in spectral methods for NC: Despite sim-
ilarity, there are differences between our low-dimensional
embedding (70) provably approximating kernel K = δD−1 +
D−1AD−1 for the kKM formulation of NC [6,35] and com-
mon ad-hoc embeddings used for KM discretization step in
the spectral relaxation methods. For example, one such dis-
cretization heuristic [94,105] uses embedding φ̃p (right col-
umn in Tab. 6) defined by the columns of matrix UK whose
rows are the K top (unit) eigenvectors of the standard eigen
system (left column). It is easy to verify that the rows of
matrix V D− 1

2 are non-unit eigenvectors for the generalized
eigen system for NC. The following relationship

φ̃p = UK ≡ [V KD− 1
2 ]rn

where operator [⋅]rn normalizes matrix rows, demonstrates
certain differences between ad hoc embeddings used by
many spectral relaxation methods in their heuristic K-means
discretization step and justified approximation embedding
(70) in Tab. 5. Note that our formulation scales each embed-
ding dimension, i.e. rows in matrix V KD− 1

2 , according to
eigenvalues instead of normalizing these rows to unit length.
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There are other common variants of embeddings for
the K-means discretization step in spectral relaxation ap-
proaches to the normalized cut. For example, [9,68,4] use

φ̃p = [Λ− 1
2U]Kp

for discretization of the relaxed NC solution. The motivation
comes from the physics-based mass-spring system interpre-
tation [9] of the generalized eigenvalue system.

Some spectral relaxation methods motivate their dis-
cretization procedure differently. For example, [110,6] find
the closest integer solution to a subspace of equivalent so-
lutions for their particular very similar relaxations of NC
based on the same eigen decomposition (68) that we used
above. Yu and Shi [110] represent the subspace via matrix

X ′ ≡ [
√
ΛmV mD− 1

2 ]cn

where columns differ from our embedding φ̃(Ip) in (70)
only by normalization. Theorem 1 by Bach and Jordan [6]
equivalently reformulates the distance between the subspace
and integer labelings via a weighted K-means objective for
embedding

φ̃p =
√

1

dp
V mp (75)

and weights wp = dp. This embedding is different from (70)
only by eigenvalue scaling.

Interestingly, a footnote in [6] states that NC objective
(41) is equivalent to weighted KM objective (32) for exact
isometry embedding

φp = 1

dp
Gp ∈R∣Ω∣ (76)

based on any decomposition A ≡ G′G. For example, our
exact isometry map (70) for m = ∣Ω∣ and G =

√
ΛV D

1
2

is a special case. While [6] reduce NC to K-means11, their
low-dimensional embedding φ̃ (75) is derived to approxi-
mate the subspace of relaxed NC solutions. In contrast, low-
dimensional embedding (70) approximates the exact esom-
etry map φ ignoring relaxed solutions. It is not obvious if
decomposition A ≡ G′G for the exact embedding (76) can
be used to find any approximate lower-dimensional embed-
dings like (70).

11 KM procedure (23) (weighted version) is not practical for objec-
tive (32) for points φp in R∣Ω∣. Instead, Dhillon et al. [35] later sug-
gested pairwise KM procedure (24) (weighted version) using kernel
Kpq ≡ ⟨φp, φq⟩.

5 Experiments

This section is divided into two parts. The first part (Sec.5.1)
shows the benefits of extra MRF regularization for kernel &
spectral clustering, e.g. normalized cut. We consider pair-
wise Potts, label cost and robust bin consistency term, as
discussed in Sec.2.1. We compare to spectral clustering [94,
68] and kernel K-means [35], which can be seen as degener-
ated versions for spectral and kernel cuts (respectively) with-
out MRF terms. We show that MRF helps kernel & spectral
clustering in segmentation and image clustering. In the sec-
ond part (Sec.5.2) we replace the log-likelihoods in model-
fitting methods, e.g. GrabCut [90], by kernel clustering term,
e.g. AA and NC. This is particularly advantageous for high
dimension features (location, depth, motion).

Implementation details: For segmentation, our kernel
cut method uses either Gaussian kernels of fixed bandwidth
σ or common KNN kernels with adaptive bandwidth e.g. see
[113,11] and [69]. Pixel features Ip can be concatenation
of LAB (color), XY (location) and M (motion or optical
flow) [20]. We choose 400 neighbors and randomly sam-
ple 50 neighbors for each pixel. Sampling does not degrade
our segmentation but expedites bound evaluation. We also
use popular mPb contour based affinities [4]. The window
radius is set to 5 pixels.

Another detail to mention is diagonal shift of the kernel
matrix. It is necessary to give PSD matrix so that our bounds
hold. However, in practice, we find the energies to decrease
at each iteration even without any diagonal shift for some
kernels that are not necessarily PSD, e.g. KNN kernel. As
such, we choose not to add any diagonal shift in our exper-
iments bellow. Also adding too large a diagonal shift may
lead to poor local minima in kernel K-means algorithm, as
discussed in [36].

For regularization in (2) we use standard contrast-sensitive
penaltywpq = 1

dpq
e−0.5∥Ip−Iq∥

2
2/η [14] where η is the average

of ∥Ip−Iq∥2 over a 8-connected neighborhood and dpq is the
distance between pixels p and q in the image plane. We set
wpq = 1

dpq
for length regularization.

We compare kernel clustering term EA(S) in (1) with a
standard model-fitting term (5) using histogram-based prob-
ability model, as is common in Grabcut approach [104,62].
We tried various bin size for spatial and depth channels.

With fixed width Gaussian kernel, the time complexity
of the naive implementation of kernel bound evaluation in
(59) isO(∣Ω∣2). The bottleneck is the evaluation ofKXt and
Xt

′KXt in derivative∇Ìe(Xt) (54). In this case, we resort to
fast approximate dense filtering method in [84], which takes
O(∣Ω∣) time. Also notice that the time complexity of the
approach in [84] grows exponentially with data dimension
N . A better approach for high-dimensional dense filtering is
proposed in [2], which is of time O(∣Ω∣ ×N). We use [84]
for low-dimensional color spaces.
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Fig. 15: Sample results on BSDS500. Top row: spectral clustering. Middle & Bottom rows: our Kernel & Spectral Cuts.

5.1 MRF helps Kernel & Spectral Clustering

Here we add MRF regulation terms to typical normalized cut
applications, such as unsupervised multi-label segmentation
[4] and image clustering [28]. Our kernel and spectral cuts
are used to optimize the joint energy of normalized cut and
MRF (1) or (73).

5.1.1 Normalized Cut with Potts Regularization

Spectral clustering [94] typically solves a (generalized) eigen
problem, followed by simple clustering method such as K-
means on the eigenvectors. However, it is known that such
paradigm results in undesirable segmentation in large uni-
form regions [4,68], see examples in Fig. 15. Obviously
such edge mis-alignment can be penalized by contrast-sensitive
Potts term. Our spectral and kernel cuts get better segmenta-
tion boundaries. As is in [35] we use spectral initialization.

Tab.7 gives quantitative results on BSDS500 datasal.
Number of ground truth segments is provided to each method.
Kernel and spectral cuts give better covering, PRI (proba-
bilistic rand index) and VOI (variation of information) than
spectral clustering. Fig.15 gives sample results. Kernel K-
means [35] gives results similar to spectral clustering and
hence are not shown.

5.1.2 Normalized Cuts with Label Cost [33]

Unlike spectral clustering, our kernel and spectral cuts do
not need the number of segments beforehand. We use kernel
cut to optimize a combination of the normalized cut, Potts
model and label costs terms. The label cost (4) penalizes
each label by constant hk. The energy is minimized by α-
expansion and αβ-swap moves in Sec.3.3. We sample ini-
tial models from patches, as in [33]. Results with different
label cost are shown in Fig.16. Due to sparsity prior, our
kernel and spectral cuts automatically prune weak models

Fig. 16: Segmentation using our kernel cut with label cost.
We experiment with increasing value of label cost hk for
each label (from left to right)

method Covering PRI VOI
Spectral Clustering 0.34 0.76 2.76

Our Kernel Cut 0.41 0.78 2.44
Our Spectral Cut 0.42 0.78 2.34

Table 7: Results of spectral clustering (K-means on eigen-
vectors) and our Kernel Cut & Spectral Cuts on BSDS500
dataset. For this experiment mPb-based kernel is used [4].

and determine the number of segments, yet yield regular-
ized segmentation. We use KNN affinity for normalized cut
and mPb [4] based Potts regularization.

5.1.3 Normalized Cut with High-Order Consistency

It is common that images come with multiple tags, such as
those in Flickr platform or the LabelMe dataset [83]. We
study how to utilize tag-based group prior for image clus-
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Fig. 17: Incorporating group prior achieves better NMI for
image clustering. Here we use tags-based group prior. Our
method achieved better NMI when more images are tagged.
The right plot shows how the weight of bin consistency term
affects our method.

tering [28] enforced as a high-order consistency potential
common in MRF-based image segmentation [54,85,98].

We experiment on the LabelMe dataset [83] which con-
tains 2,600 images of 8 scene categories (coast, mountain,
forest, open country, street, inside city, tall buildings and
highways). We use the same GIST feature, affinity matrix
and group prior as used in [28]. We found the group prior
to be noisy. The dominant category in each group occupies
only 60%-90% of the group. The high-order consistency
term is defined on each group. For each group, we intro-
duce an energy term that is akin to the robust Pn-Potts [54],
which can be exactly minimized within a single αβ-swap or
α-expansion move. Notice that here we have to use robust
consistency potential instead of rigid ones.

Our kernel cut minimizes NC plus the robust Pn-Potts
term. Spectral cut minimizes energy of (72). Normalized
mutual information (NMI) is used as the measure of cluster-
ing quality. Perfect clustering with respect to ground truth
has NMI value of 1.

Spectral clustering and kernel K-means [35] give NMI
value of 0.542 and 0.572 respectively. Our kernel cut and
spectral cut significantly boost the NMI to 0.683 and 0.681.
Fig. 17 shows the results with respect to different amount of
image tags used. The left most points correspond to the case
when no group prior is given. We optimize over the weight
of high order consistency term, see Fig.17. Note that it’s not
the case the larger the weight the better since the grouping
prior is noisy.

We also utilize deep features, which are 4096 dimen-
sional fc7 layer from AlexNet [59]. We either run plain K-
means, or construct a KNN kernel on deep features. These
algorithms are denoted as deep K-means, deep spectral cut
or deep kernel cut in Fig. 17. Incorporating group prior in-
deed improved clustering. The best NMI of 0.83 is achieved
by our kernel cut and spectral cut for KNN kernel on deep
features.

5.2 Kernel & Spectral Clustering helps MRF

In typical MRF applications we replace the log-likelihood
terms by average association or normalized cut. We eval-
uate our Kernel Cut (fixed width kernel or KNN ) in the
context of interactive segmentation, and compare with the
commonly used GrabCut algorithm [90]. In Sec. 5.2.1, we
show that our kernel cut is less sensitive to choice of regu-
larization weight γ. We further report results on the GrabCut
dataset of 50 images and the Berkeley dataset in Sec. 5.2.2.
We experiment with both (i) contrast-sensitive edge regu-
larization, (ii) length regularization and (iii) color clustering
(i.e., no regularization) so as to assess to what extent the al-
gorithms benefit from regularization.

From Sec. 5.2.3 to Sec. 5.2.6, we also report segmen-
tation results of our kernel cut with high-dimensional fea-
tures Ip, including location, texture, depth, and motion re-
spectively.

5.2.1 Robustness to regularization weight

We first run all algorithms without smoothness. Then, we ex-
periment with several values of γ for the contrast-sensitive
edge term. In the experiments of Fig. 18 (a) and (b), we used
the yellow boxes as initialization. For a clear interpretation
of the results, we did not use any additional hard constraint.
In Fig. 18, ”KernelCut-KNN-AA” means Kernel Cut with
KNN kernel for average association (AA). Without smooth-
ness, our Kernel Cut yields much better results than Grab
Cut. Regularization significantly benefited the latter, as the
decreasing blue curve in (a) indicates. For instance, in the
case of the zebra image, model fitting yields a plausible seg-
mentation when assisted with a strong regularization. How-
ever, in the presence of noisy edges and clutter, as is the
case of the chair image in (b), regularization does not help
as much. Note that for small regularization weights γ our
method is substantially better than model fitting. Also, our
method is less dependent on regularization weight and does
not require fine tuning of γ.

5.2.2 Segmentation on GrabCut & Berkeley datasets.

First, we report results on the GrabCut database (50 images)
using the bounding boxes provided in [63]. For each image
the error is the percentage of mis-labeled pixels. We com-
pute the average error over the dataset.

We experiment with four variants of our Kernel Cut, de-
pending on whether to use fixed width Gaussian kernel or
KNN kernel, and also the choice of normalized cut or aver-
age association term. We test different smoothness weights
and plot the error curves12 in Fig.19. Table 8 reports the best

12 The smoothness weights for different energies are not directly
comparable; Fig. 19 shows all the curves for better visualization.
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(a)

(b)

Fig. 18: Illustration of robustness to smoothness weight.

error for each method. For contrast-sensitive regularization
GrabCut gets good results (8.2%). However, without edges
(Euclidean or no regularization) GrabCut gives much higher
errors (13.6% and 27.2%). In contrast, KernelCut-KNN-AA
(Kernel Cut with adaptive KNN kernel for AA) gets only
12.2% doing a better job in color clustering without any help
from the edges. In case of contrast-sensitive regularization,
our method outperformed GrabCut (7.1% vs. 8.2%) but both
methods benefit from strong edges in the GrabCut dataset.
Fig .20 shows that our Kernel Cut is also robust to the hyper-
parameter, i.e. K for nearest neighbours, unlike GrabCut.

Figure 21 gives some results. The top row shows a fail-
ure case for GrabCut where the solution aligns with strong
edges. The second row shows a challenging image where
our KernelCut-KNN-AA works well. The third and fourth
rows show failure cases for Kernel Cut with fixed-width
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Fig. 19: Average error vs. regularization weights for differ-
ent variants of our KernelCut on the GrabCut dataset.

boundary color clustering term

smoothness GrabCut
KernelCut
-Gau-AA

KernelCut
-Gau-NC

KernelCut
-KNN-AA

none 27.2 20.4 17.6 12.2
Euclidean length 13.6 15.1 16.0 10.2
contrast-sensitive 8.2 9.7 13.8 7.1

Table 8: Box-based interactive segmentation (Fig.21). Error
rates (%) are averaged over 50 images in GrabCut dataset.
KernelCut-Gau-NC means KernelCut for fixed width Gaus-
sian kernel based normalized cut objective.

Gaussian kernel due to Breiman’s bias [69] separating uni-
form color segments; see green bush and black suit. Adap-
tive kernel (KNN) addresses this bias.

We also tested seeds-based segmentation on a different
database [71] with ground truth, see Tab.9 and Fig.22.

5.2.3 Segmentation of similar appearance objects

Even though objects may have similar appearances or look
similar to the background (e.g. the top row in Fig.24), we
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Fig. 20: Our method aKKM is robust to choice of K while
GrabCut is sensitive to bin size for histograms.

assume that the objects of interest are compact and have dif-
ferent locations. This assumption motivates using XY coor-
dinates of pixels as extra features for distinguishing similar
or camouflaged objects. XY features have also been used in
[81] to build space-variant color distribution. However, such
distribution used in MRF-MAP inference [81] would still
over-fit the data [97]. Let Ip ∈ R5 be the augmented color-
location features Ip = [lp, ap, bp, βxp, βyp] at pixel p where
[lp, ap, bp] is its color, [xp, yp] are its image coordinates,
and β is a scaling parameter. Note that the edge-based Potts
model [14] also uses the XY information. Location features
in the clustering and regularization terms have complemen-

Fig. 21: Sample results for GrabCut and our kernel cut with
fixed width Gaussian or adaptive width KNN kernel, see
Tab.8.

boundary smoothness color clustering term

BJ GrabCut
KernelCut
-KNN-AA

none 12.4 12.4 7.6
contrast-sensitive 3.2 3.7 2.8

Table 9: Seeds-based interactive segmentation (Fig.22). Er-
ror rates (%) are averaged over 82 images from Berkeley
database. Methods get the same seeds entered by four users.
We removed 18 images with multiple nearly-identical ob-
jects (see Fig.24) from 100 image subset in [71]. (Grab-
Cut and KernelCut-KNN-AA give 3.8 and 3.0 errors on the
whole database.)

Fig. 22: Sample results for BJ [14], GrabCut [90], and our
kernel cut for adaptive KNN kernel, see Tab.9.

Fig. 23: Visualization of a pixel’s K-Nearest-Neighbours for
RGB feature (left) or RGBXY feature (right).

tary effect: the former solves appearance camouflage while
the latter gets edge alignment.

We test the effect of adding XY into feature space for
GrabCut and Kernel Cut. We try various β for Kernel Cut.
Fig.23 shows the effect of different β on KNNs of a pixel.
For histogram-based GrabCut we change spatial bin size for
the XY channel, ranging from 30 pixels to the image size.
We report quantitative results on 18 images with similar ob-
jects and camouflage from the Berkeley database [70]. Seeds
are used here. Fig. 25 shows average errors for multi-object
dataset, see example segmentations in Fig. 24.

Fig. 26 gives multi-label segmentation of similar objects
in one image with seeds using our algorithm. We optimize
kernel bound with move-making for NC and smoothness
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(a) seeds (b) ground truth (c) GrabCut (d)Kernel Cut

Fig. 24: Sample results using RGBXY+XY.
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Fig. 25: Error on Multi-objects dataset. We vary spatial bin-
size for GrabCut and weight β in [l, a, b, βX,βY ] for Ker-
nel Cut. The connection range is the average geometric dis-
tance between a pixel and its kth nearest neighbor. The
right-most point of the curves corresponds to the absence
of XY features. GrabCut does not benefit from XY features.
Kernel Cut achieves the best error rate of 2.9% with connec-
tion range of 50 pixels.
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Fig. 26: Multi-label segmentation for similar objects.

term combination, as discussed in Sec. 3.2. Fig. 26 (c) shows
energy convergence.

0 0.2 0.4 0.6 0.8 1
Weight of extra dimensions

10

20

30

40

50

E
rr

or
ra

te
(%

)

11:9%

2 4 6 8 10
Number of bins in extra dimensions

12:6%

GrabCut
Kernel Cut

Fig. 27: The average errors of GrabCut and Kernel Cut
methods for texture segmentation over 50 desaturated im-
ages from GrabCut database [90]. We optimize GrabCut
with respect to smoothness weight and bin sizes in the in-
tensity dimension. We optimize the result of Kernel Cut with
respect to smoothness weight.
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Fig. 28: The average errors of GrabCut and Kernel
Cut methods over 64 images selected from NYUv2
database [78].

5.2.4 Texture segmentation

The goal of this experiment is to demonstrate scalability of
our methods to highly dimensional data. First, desaturated
images from GrabCut database [90] are convolved with 48
filters from [102]. This yields a 48-dimensional descriptor
for each pixel. Secondly, these descriptors are clustered into
32 textons by K-means. Thirdly, for each pixel we build a
32-dimensional normalized histogram of textons in 5 × 5

vicinity of the pixel. Then the gray-scale intensity13 of a
pixel is augmented by the corresponding texton histogram
scaled by a factor w. Finally, resulting 33-dimensional fea-
ture vectors are used for segmentation. We show the result
of Kernel Cut with respect to w in Fig.27. We compare our

13 We found that for the GrabCut database adding texture features to
RGB does not improve the results.
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results with GrabCut with various bin sizes for texture fea-
tures.

5.2.5 Interactive RGBD Images Segmentation

Depth sensor are widely used in vision for 3D modelling [37,
79], semantic segmentation [34,45,78,87], motion flow [44].
We selected 64 indoor RGBD images from semantic seg-
mentation database NYUv2 [78] and provided bounding
boxes and ground truth. In contrast to [90], the prepared
dataset consists of low-quality images: there are camera mo-
tion artifacts, underexposed and overexposed regions. Such
artifacts make color-based segmentation harder.

We compare GrabCut to Kernel Cut over joint features
Ip = [Lp, ap, bp, βDp] as in Sec.5.2.3. Figs. 28 and 29 show
the error statistics and segmentation examples. While Kernel
Cut takes advantage of the additional channel, GrabCut fails
to improve.

5.2.6 Motion segmentation

Besides the location and depth features, we also test seg-
mentation with motion features. Figs. 30, 31 and 32 com-
pare motion segmentations using different feature spaces:
RGB, XY, M (optical flow) and their combinations (RGBM
or RGBXY or RGBXYM). Abbreviation +XY means Potts
regularization. We apply kernel cut (Alg.1) to the combina-
tion of NC with the Potts term.

Challenging video examples: For videos in FBMS-59
dataset [19], our algorithm runs on individual frames instead
of 3D volume. Segmentation of previous frame initializes
the next frame. The strokes are provided only for the first
frame. We use the optical flow algorithm in [20] to gener-
ate M features. Selected frames are shown in Figs. 30 and
31. Instead of tracks from all frames in [82], our segmen-
tation of each frame uses only motion estimation between
two consecutive frames. Our approach jointly optimizes nor-
malized cut and Potts model. In contrast, [82] first clusters
semi-dense tracks via spectral clustering [19] and then ob-
tains dense segmentation via regularization.

Kitti segmentation example: We also experiment with
Kitti dataset [72]. Fig.32 shows the multi-label segmenta-
tion using either color information RGB+XY (first row) or
motion MXY+XY (second row). The ground-truth motion
field works as M channel. Note that the motion field is
known only for approximately 20% of the pixels. To build
an affinity graph, we construct a KNN graph from pixels
that have motion information. The regularization over 8-
neighborhood on the pixel grid interpolates the segmenta-
tion labels during the optimization procedure.
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(a) frames (b) optical flow [20] (c) M+XY (d) RGB+XY (e) RGBM+XY

Fig. 30: Motion segmentation using our framework for the sequence horses01 in FBMS-59 dataset [19]. Motion feature alone
(M+XY in (c)) is not sufficient to obtain fine segmentation. Our framework successfully utilize motion feature (optical flow)
to separate the horse from the barn, which have similar appearances. See supplementary material for results on the video.

(a) frames (b) optical flow [20] (c) RGBXY+XY (d) RGBXYM+XY

Fig. 31: Multi-label motion segmentation using our framework for the sequence ducks01 in FBMS-59 dataset [19]. This video
is challenging since the ducks have similar appearances and even spatially overlap with each other. However, different ducks
come with different motions, which helps our framework to better separate individual ducks. See supplementary materials.
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color codes the pixels that do not have motion information. The second row shows color-based segmentation. The third row
shows motion based segmentation with location features. We also tried M+XY segmentation, but it does not work as well as
MXY+XY above. The results for RGBMXY+XY were not significantly different from MXY+XY.
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