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Figure 1. Our Self-Cross guidance addresses subject mixing in particular for similar subjects. Our training-free method can boost the

performance of any Unet-based or transformer-based diffusion models such as Stable Diffusion 1, 2, and 3 (shown in Fig. 5 and 6.)

Abstract

Diffusion models achieved unprecedented fidelity and diver-

sity for synthesizing image, video, 3D assets, etc. How-

ever, subject mixing is an unresolved issue for diffusion-

based image synthesis, particularly for synthesizing mul-

tiple similar-looking subjects. We propose Self-Cross Dif-

fusion Guidance to penalize the overlap between cross-

attention maps and the aggregated self-attention map.

Compared to previous methods based on self-attention or

cross-attention alone, our guidance is more effective in

eliminating subject mixing. What’s more, our guidance ad-

dresses subject mixing for all relevant patches beyond the

most discriminant one, e.g., the beak of a bird. For each

subject, we aggregate self-attention maps of patches with

higher cross-attention values. Thus, the aggregated self-

attention map forms a region that the whole subject attends

to. Our training-free method boosts the performance of

both Unet-based and Transformer-based diffusion models

such as the Stable Diffusion series. We also release a sim-

ilar subjects dataset (SSD), a challenging benchmark, and

utilize GPT-4o for automatic and reliable evaluation. Ex-

tensive qualitative and quantitative results demonstrate the

effectiveness of our self-cross diffusion guidance.

1. Introduction

Diffusion-based generative models have made significant

progress in recent years in synthesizing high-quality im-

ages [41], videos [5], 3D assets [37], etc. With a simple

text prompt, diffusion-based generative models such as Sta-

ble Diffusion [41] can create highly photorealistic or artistic

images of various styles and subjects. Such progress revo-

lutionized many applications including the content creation.

However, text-to-image diffusion models still have many is-

sues such as subject neglect, subject mixing, and attribute

binding. We are particularly interested in solving subject

mixing in this work. Many mitigations [8, 17, 31] were pro-

posed to enhance the faithfulness of text-to-image synthesis

but the issue of subject mixing remains, see failure cases of

previous methods [17, 31] in Fig. 1. This is more prominent

when synthesizing multiple similar-looking subjects, e.g., a

photo of a leopard and a tiger in Fig. 1.

Since self-attention maps reflect the similarity of patches

and cross-attention maps reflect the subjects. Intuitively,

patches from a subject should not show large similarity to

patches from other subjects at least for some timesteps and

layers to avoid copying patches from other subjects. Empir-

ically, Fig. 2 shows a failure case for Stable Diffusion [41]

with subject mixing and an obvious overlap between cross-



Figure 2. Results of Stable Diffusion [41] and our method with

Self-Cross guidance for the same prompt ”a bear and an elephant”.

Images are generated from the same random seed. “cross” means

cross-attention map and “self” means the aggregated self-attention

map. The overlap between self-attention and cross-attention leads

to subject mixing, while Self-Cross guidance reduces overlapping.

attention maps w.r.t. a subject token and self-attention maps

w.r.t. patches of another subject. Our insight is that a sub-

ject should not attend to other subjects by its self-attention

maps. As shown in Fig. 2, while overlapping between self-

attention and cross-attention maps results in a failure case,

our Self-Cross diffusion guidance penalizes such overlaps

yielding synthetic images without subject mixing.

Our method is different from previous methods based on

cross-attention or self-attention maps alone [3, 17, 31]. We

are the first to explore regularization between self-attention

and cross-attention maps. What’s more, we formulate Self-

Cross diffusion guidance for self-attention maps of multi-

ple image patches beyond the most discriminant one. It is

well-known that neural networks for perceptron such as im-

age classification tend to focus on the discriminant region

of an image, e.g., the beak of a bird. However, apart from

the most discriminant patch, other patches with more de-

tails are also particularly important for synthesizing mul-

tiple similar-looking subjects. We first adaptively identify

all image patches corresponding to a subject and then avoid

their attendance to other subjects by self-attention maps. As

a training-free method, it outperforms other single-patch-

based approaches [8, 17] qualitatively and quantitatively.

Previous datasets with prompts for image synthesis are

not challenging in terms of subject mixing. What’s worse,

the commonly used CLIP score doesn’t correlate well with

human judgment. Therefore, to facilitate image synthe-

sis of similar objects, we release a similar-subject dataset

(SSD) consisting of text prompts with similar subjects. To

enable benchmarking at scale, we leverage state-of-the-art

vision language models such as GPT-4o to evaluate syn-

thetic images of different methods by visual question an-

swering [22].

The main contributions of this paper are as follows.

• We propose Self-Cross diffusion guidance for text-to-

image synthesis of similar-looking subjects, which effec-

tively addresses subject mixing as shown in our qualita-

tive and quantitative results.

• Our guidance is training-free and can improve the perfor-

mance of pre-trained models such as Stable Diffusion.

• We propose similar-subject dataset (SSD), a new bench-

mark for image synthesis of similar subjects. Our bench-

mark includes prompts for two or three similar subjects

and an effective metric using VLM [22].

• As a side effect evidenced by improved existence and rec-

ognizability scores, our method reduced subject neglect.

2. Related Work

Text-to-Image Diffusion Models Given text prompts,

text-to-image synthesis aims to generate visually coherent

images. Early approaches utilized GANs [16, 25, 43, 44,

48, 54, 59] and autoregressive models [7, 10, 11, 14, 27,

38, 55, 56]. Recently, with ground breaking advancements

in diffusion models [9, 20, 21, 30, 33, 46, 47], the focus of

text-to-image synthesis has shifted toward diffusion models

[4, 13, 36, 39, 41, 43, 58]. Although diffusion models can

generate photorealistic images, ensuring faithful adherence

to the provided text prompt remains a significant challenge.

To tackle this issue, methods like ReCap [45], DALLE3 [4],

and SD3 [13] leverage improved image-caption pairs during

training or incorporate multiple language encoders to cap-

ture more expressive language representations. However,

these methods require training models from scratch, which

entails substantial computational costs and makes them in-

applicable to popular models like Stable Diffusion [41] and

Imagen [43]. Furthermore, these models only partially ad-

dress issues such as subject neglect, subject missing, and

attribute binding, leaving room for improvement towards

prompt-faithful synthesis.

Guidance for Consistent Text-to-Image Generations

Training-free inference-time optimization is an active re-

search area to improve the consistency of the pre-trained

text-to-image models. These methods typically extract in-

ternal representations of the denoising networks and cor-

rect the denoising trajectory to improve the alignment to the

given prompt. One way to modulate the denoising trajec-

tory is to replace internal features, such as attention mod-

ules in PnP-Diffusion [50], FreeControl [32], Prompt-to-



Prompt [19], DenseDiffusion [26], and MasaCtrl [6]. While

effective for image editing and style transfer, these meth-

ods fail to address critical issues like subject mixing and

attribute misalignment. Another line of work optimizes la-

tents by minimizing guidance loss, in a way similar to clas-

sifier guidance [9] and classifier-gree guidance [20]. To ad-

dress the problems of subject neglect, subject mixing, and

attribute binding, many approaches have been proposed. Ge

et al. [15], Self-Guidance [12], and DisenDiff [57] design

loss functions for image editing and controllable genera-

tion. Attention Refocusing [35], BoxDiff [53], TokenCom-

pose [52], and Ge et al. [15] use pre-defined layouts, ei-

ther from external models or users, as inference-time super-

vision. However, these methods rely on prior knowledge,

which is sometimes unreachable in real world. Therefore,

other knowledge-free methods have been developed. Fol-

lowing Attend&Excite [8] and A-STAR [2] steps, CON-

FORM [31] takes contrastive loss for subject separation

and attribute-binding. Linguistic Binding [40] introduces a

variant of Kullback-Leibler divergence as the loss for im-

proved consistency. INITNO [17] leverages both cross-

attention maps and self-attention maps to refine the ini-

tial noise. While they use cross-attention and self-attention

separately, we emphasize that the interaction between self-

attention and cross-attention is key to eliminating subject

mixing and improving faithfulness. Moreover, these meth-

ods typically consider the most discriminant patch, which is

insufficient for removing subject mixing.

3. Preliminaries

Diffusion Model Latent diffusion model [41] operates in

a latent space instead of the pixel space, which largely re-

duces the computational complexity of image generation.

An encoder and a decoder are trained to encode images

and decode lower-dimensional latents respectively. Further-

more, cross-attention between prompts and image patches

allows controllable image generation with various prompts,

such as layouts, semantics, and texts.

In the latent space, the forward process gradually adds

Gaussian noises on the latent code z0 over time until it com-

pletely deteriorates to Gaussian noise zT . While in the re-

verse denoising process, a denoising network [42] ϵθ de-

noises the latent code zt iteratively until time step zero z0.

The training objective is formally defined as:

L = Ezt,ϵ∼N(0,I),c(y),t||ϵ− ϵθ(zt, c(y), t)||2 (1)

where c(y) represents the condition embedding, for exam-

ple CLIP embedding for text prompt y.

In cross-attention modules, condition embeddings c are

projected to query Q and values V . Accordingly, interme-

diate representations from UNet are projected to keys K.

Therefore, the cross-attention maps can be described as:

Ac = Softmax(
QKT

√
d

) (2)

where
√
d is a scaling factor [51]. Each text token has a

cross-attention map with shape Rh/P×w/P for patch size

P × P . The cross-attention maps reflect the attendance of

text tokens to patches. On the other hand, the self-attention

map for each patch indicates the relationship between dif-

ferent patches. We denote the cross attention map of a text

token k as Ac
k ∈ Rh/P×w/P and the self attention map of a

patch (x, y) as As
x,y ∈ Rh/P×w/P .

Attention Based Guidance As discussed in Sec. 2, one

methodology for consistent text-to-image generation is

attenton-based guidance [3, 8, 17, 31, 35] using self atten-

tion or cross attention. Here we briefly introduce the most

relevant methods to our Self-Cross diffusion guidance.

To avoid subject neglect, Attend-and-Excite [8] finds the

patch with maximum cross attention for each token, and pe-

nalizes if the maximum cross attention is small. In other

words, it encourages the appearance of specified subjects.

Speficailly, the cross-attention response score is defined as,

Scross-attn = max
k∈K

Scross-attn,k (3)

where K indicates the set of subjects’ tokens and

Scross-attn,k = 1−max(Ac
k). (4)

Unlike Attend-and-Excite[8], our Self-Cross diffusion

guidance loss is between self-attention and cross-attention.

Besides, it’s formulated for all relevant subject patches be-

yond the most discriminant one. The most similar guid-

ance to ours is the self-attention conflict score introduced

in INITNO [17]. However, INITNO [17] is still limited to

the most discriminant patch, and our method outperformed

INITNO [17] by a large margin shown in our experiments.

While separation loss [3] penalizes overlap between cross-

attention maps, it isn’t a training-free method. Our pro-

posed Self-Cross guidance is novel and complementary to

existing works on attention-based guidance.

Optimization of Guidance Loss The standard method

for optimizing a guidance loss is through gradient descent.

To better minimize a guidance loss, Iterative Latent Refine-

ment [8] runs multiple steps of gradient descent until the

guidance loss is bellow a threshold. To find a better initial

noise, Initial noise optimization [17] (INITNO) optimizes

over the mean and variance of initial noise util the initial

guidance loss is satisfactory. We adopted the two techniques

above for our Self-Cross diffusion guidance.



4. Our Method

We describe Self-Cross diffusion guidance given a pair of

similar subjects, namely “a bear and an elephant” with

”bear” at index i = 2 and ”elephant” at index at j = 5.

Our method can be easily extended to multiple pairs.

Aggregation of Self-Attention Maps Fig. 3 describes

the aggregation of self-attention maps. Given the cross-

attention map of “bear”, we select patches with high re-

sponses and visualize their self-attention maps. The diver-

sity of self-attention for different patches means the self-

attention map for the most discriminant patch alone can’t

cover all the regions the subject attends to. Thus, the key

to our Self-Cross diffusion guidance is aggregating self-

attention maps. If limited to the most discriminant patch

(with the highest cross-attention value), other foreground

patches may lead to subject mixing, as shown in Fig. 7.

Firstly, we apply simple and efficient Otsu’s method [34]

on the cross-attention maps, which automatically returns

the threshold and masked patches with relatively higher

cross-attention values. Secondly, we aggregate all the self-

attention maps of masked patches to better represent the

whole region that a subject attends to. For subject at i with

cross-attention map Ac
i , aggregated self-attention map is:

As
i =

∑
xm,yn

(Ac
i [xm, yn]×As

xm,yn
)

∑
xm,yn

Ac
i [xm, yn]

(5)

Where [xm, yn] are the coordinates of the selected patches,

Ac
i [xm, yn] is the cross-attention value for token at i of the

patch at [xm, yn], and As
i [xm, yn] is the self-attention map

for the patch at [xm, yn].
In summary, we select patches corresponding to a sub-

ject and then take a weighted sum of the self-attention

Figure 3. Self-Cross diffusion guidance between the cross-

attention of “elephant” and the self-attention of “bear”

maps for these patches, where the weights are the patches’

cross attention values. Likewise, we obtain aggregated self-

attention maps As
i for all subjects at given indexes.

Self-Cross Diffusion Guidance The aggregated self-

attention maps highlight regions that the subject attends to.

Our core assumption is that a subject should not attend to

other subjects in the image at some time-steps and lay-

ers through its self-attention maps. Hence, we propose to

penalize the overlap between the aggregated self-attention

map of one subject and cross-attention maps of other simi-

lar subjects. This has a different effect compared to a loss

between cross-attention maps, as aggregated self-attention

can be different from cross-attention, shown in Fig. 3.

The example prompt in Fig. 3 has two pairs of attention

maps, aggregated self-attention of “bear” & cross-attention

of “elephant” and aggregated self-attention of “elephant” &

cross-attention of “bear”. The Self-Cross diffusion guid-

ance between the subject at i and the subject at j is defined

as their overlap g(i, j),

g(i, j) =
∑

x,y

min(As
i [x, y], A

c
j [x, y])

+
∑

x,y

min(Ac
i [x, y], A

s
j [x, y])

(6)

where As
i is the self-attention map of subject at i and Ac

j is

the cross-attention map of subject at j.

Now, let’s consider more similar subjects. If there are N

similar subjects, then mathematically we would have C2
N

pairs of subjects. In this case, our Self-Cross diffusion guid-

ance is the average of the C2
N ones, as in Eq.7,

Sself-cross =

i ̸=j∑

i,j∈Ω

g(i, j)

C2
N

. (7)

where Ω is the set containing all subject indexes. Similar to

INITNO [17], we also include the cross-attention response

score in our total loss.

Ltotal = Sself-cross + λ · Scross-attn. (8)

Spatial Relationship Among Subjects We define Our

novel self-cross diffusion guidance with much thought to

penalize appearance overlap while not hindering generation

capabilities, as shown quantitatively in Tab. 5, Tab. 2 and

qualitatively in Fig. 6. To achieve this,

(a) We define the guidance only for early timestamps in

the reverse process. Because attention maps from early

timestamps are known to be semantically meaningful.

(b) It is known that attention maps of intermediate layers

in diffusion models are highly correlated to semantics.

So we enforce our guidance for these selected layers.



(c) Other tokens such as verbs and adjectives in a prompt

can render subject relationships for image synthesis.

These tokens are not involved in our guidance.

See more implementation details in the appendix A.

Overall Pipeline Alg. 1 shows the overall pipeline, which

involves initial noise optimization for our total loss 8. We

apply Self-Cross guidance to the first half of the reverse pro-

cess, which is more relevant for the semantic structure of

synthesized images. Similar to previous work [8, 17], it-

erative refinement is conducted to ensure losses are below

specified thresholds.

Algorithm 1: T2I with Self-Cross Guidance

Input: A text prompt P and indices Ω of subjects

A pre-trained T2I diffusion model such as SD(·)
Max iterations: τMaxAlterStep, τMaxIter

Thresholds: τcross-attn, τself-cross
A set of iterations for refinement {t1, t2, ..., tk}.
Output: Generated image z0.

Noise Initialization Step:

Noise pool P ← {}, t← T ;

do INITNO (loss Ltotal = Sself-cross + λScross-attn)

return noise pool P
zt ← argminzt∈P Ltotal

Reverse Process:

while t ≥ τMaxAlterStep do
▷ Compute attention and losses

Scross-attn, Sself-cross, ← SD(zt, P, t)
if t ∈ {t1, t2, ..., tk} and

(Scross-attn > τcross-attn or

Sself-cross > τself-cross) then
▷ Iterative Refinement Steps

i = 0
while (Scross-attn > τcross-attn or

Sself-cross > τself-cross) and i < τMaxIter

do

zt ← SGD(Ltotal)
i = i+ 1

end

else

zt ← SGD(Ltotal)
end

zt ← SD(zt, P, t)
t = t−1

end

▷ Continue the remaining steps without guidance

while t > 0 do

, , zt ← SD(zt, P, t)
t = t−1

end

return z0

5. Experiments

Datasets and Baselines Similar to previous work [8, 17,

31] on consistent text-to-image generation, we first report

results on three datasets including animal-animal, animal-

object, and object-object prompts based on Stable Diffusion

models.1 After visualization of experimental results, We

found some prompts are visually distinct and not challeng-

ing enough. Hence, we introduce our new dataset Similar

Subjects Dataset (SSD) containing 31 prompts with two

subjects(SSD-2) and 21 prompts with three subjects(SSD-

3). The former ones are designed for primitive baselines,

e.g., Stable Diffusion 1, and the latter ones are intended

for stronger baselines, e.g., Stable Diffusion 3. In the new

dataset, subjects usually share similar structures with dis-

tinguishable details, e.g., different textures for leopards and

tigers shown in Fig. 1. Qualitative and quantitative results

show more subject mixing for each method with the new

dataset than the original ones. Additionally, We also verify

the spatial reasoning capacity of our method on 2D-spatial

and 3D-spatial from T2ICompBench [23] [24]. These sub-

sets emphasize spatial relationships between two subjects.

We compare our method to the original Stable Diffu-

sion [41] as well as other training-free methods includ-

ing Initial Noise Optimization (INITNO) [17] and CON-

FORM [31]. Separate-and-Enhance [3] is relevant to our

work regarding subject mixing, but it necessitates fine-

tuning, making it incomparable to training-free approaches.

5.1. Qualitative results

Self-Cross v.s. baselines We provide the qualitative com-

parisons in Figure 4, Figure 5, and Figure 6 using SD1.4,

SD2.1, and SD3-medium respectively. For each prompt, we

used the same list of random seeds for all methods. Self-

Cross diffusion guidance successfully addressed the issue

of subject mixing in most cases. For example, in Figure 4,

given the prompt “a bird and a rabbit”, Stable diffusion [41],

INITNO [17], and CONFORM [31] generated birds with

rabbits’ears, while our method generated faithful images

without subject mixing. Our method synthesized better im-

ages for extremely similar subjects too, e.g., “a humming-

bird and a kingfisher”. Hummingbirds are recognized for

their iridescent plumage and long, slender beaks, whereas

kingfishers typically feature bold, vibrant colors like blue

and have shorter, stout beaks. Appendices E and G show

more qualitative results, failure cases, and discussion.

Self-attention and Cross-attention maps Fig. 3 presents

a cross-attention map and multiple self-attention maps for

top-responsive image patches, along with an aggregated

1We used the original dataset except for replacing the word “mouse”

with “rat” for any Animal-Animal prompt including “mouse”. This avoids

ambiguity, as “mouse” can refer to a rodent or a computer mouse.
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Figure 4. Qualitative comparisons of Self-Cross (ours) to SD1.4 [41], INITNO [17], CONFORM [31]. For each prompt in the left column,

we sample four seeds and show the results of different methods.

self-attention map highlighting the region the entire sub-

ject(“bear”) attend to. Note that the aggregated self-

attention map is different from the original cross-attention

map, which motivated Self-Cross diffusion guidance rather

than using cross-attention maps alone. The next section ex-

plores different self-attention aggregation schemes and their

impact on image synthesis.

Self-Cross guidance with the increasing number of

patches To see the effect of self-attention aggregation, we

compare our Self-Cross diffusion guidance using different

patches. Specifically, given a cross-attention map, we select

(a) the patch with the maximum cross-attention value.

(b) the top 16 patches w.r.t. cross-attention value.

(c) masked patches which typically have more than 16

patches. The details of masking are in Sec. 4.

Fig. 7 shows results with three example prompts, which

clearly demonstrate less subject missing with more patches.

If only the patch with the maximum cross-attention is used

in Self-Cross guidance, the subjects are still mixing. The

mixing is less severe but not eliminated with 16 patches, for

example mixing in terms of hair, teeth, and feet. The best is

when we use all masked patches in the otsu mask and define

an aggregated self-attention map for our guidance, in which

case the sutle mixing is eliminated.

5.2. Quantitative results

Quantitative results include TIFA-GPT4o scores and text-

text similarities. Our TIFA-GPT4o is a variant of the re-

cently proposed TIFA metric [22], which is much more cor-

Methods SSD-3

Question Types Ext Rec w/o M t-t sim

SD3 Medium 33.54 30.31 70.08 73.82

Self-Cross(Ours) 57.92 53.08 77.15 74.96

Table 1. Quantitative results using SD3 for prompts with three

subjects.

% Animal-Animal Animal-Obj Obj-Obj SSD-2

SD1.4 76.5 79.2 76.4 70.0

INITNO 82.2 84.0 82.3 72.0

CONFORM 81.9 84.6 82.0 70.7

Self-Cross(Ours) 84.3 84.7 82.5 73.6

Table 2. Average text-text similarities (↑) on different methods

% Animal-Animal SSD-2 2D-Spatial 3D-Spatial

SD2.1 81.68 73.01 78.71 77.73

INITNO 83.15 73.20 - -

Self-Cross(Ours) 84.02 73.53 80.4 80.0

CONFORM 85.21 73.87 - -

CONFORM+Ours 85.88 74.91 - -

Table 3. Average text-text similarities (↑) on different methods

related with human judgment compared to the widely used

CLIP score. Our main quantitative results are TIFA-GPT4o

scores, while CLIP scores should be interpreted with cau-

tion (see appendix D for details).

TIFA-GPT4o Scores TIFA [22] aims to assess the faith-

fulness of the generated image to the input prompt. It uses

a vision-language model to perform Visual Question An-

swering (VQA) on the generated image, guided by specific

questions about the image’s contents. In our implementa-

tion, we leverage a more advanced vision-language model,



Methods Animal-Animal Animal-Object Object-Object SSD-2

Question Types Ext Rec w/o M Ext Rec w/o M Ext Rec w/o M Ext Rec w/o M

SD1.4 [41] 39.51 29.70 72.24 67.84 53.72 90.36 34.15 31.89 94.22 30.77 28.09 77.47

INITNO [17] 89.39 77.09 82.26 98.37 78.00 95.97 96.20 90.42 95.17 61.34 55.53 79.70

CONFORM [31] 89.63 78.00 84.22 98.37 75.09 97.16 78.58 73.12 97.48 67.54 59.90 79.50

Self-Cross(Ours) 94.55 87.79 92.94 99.60 75.17 98.30 98.95 93.19 98.65 77.67 70.92 86.45

Table 4. TIFA-GPT4o Scores (↑) on four benchmarks: Animal-Animal, Animal-Object, Object-Object, and our proposed Similar Subjects

Dataset. Inspired by TIFA [22], we employ GPT4o [1] as the VQA model to evaluate three aspects: Existence of both subjects (Ext),

Recognizability of both subjects (Rec), and Absence of Mixing of subjects (w/o M). GPT4o is prompted with several True/False questions,

and we report the percentage of True responses as the scores. The list of question prompts is given in the supplementary materials. Best

results are highlighted in bold and second best results are shown with underline.

Methods Animal-Animal SSD-2 2D-Spatial 3D-Spatial

Question Types Ext Rec w/o M Ext Rec w/o M Ext Rec Rel w/o M Ext Rec Rel w/o M

SD2.1 [41] 61.63 38.23 67.51 52.84 36.98 84.932 76.16 73.37 32.46 90.21 69.1 66.17 47.72 90.33

INITNO [17] 80.96 47.18 63.80 68.70 46.10 73.85 - - - - - - - -

Self-Cross(Ours) 89.53 55.03 78.79 77.35 45.36 77.08 87.37 83.90 35.48 91.24 87.07 82.60 57.96 91.27

CONFORM [31] 96.88 70.19 92.49 83.71 53.90 89.76 - - - - - - - -

CONFORM+Ours 97.83 69.00 94.66 81.39 55.98 93.20 - - - - - - - -

Table 5. Quantitative benchmarks with SD2.1 TIFA-GPT4o Scores (↑) on two challenging benchmarks: Animal-Animal and our proposed

Similar Subjects Dataset. Best results are highlighted in bold and second best results are shown with underline. vanilla SD2.1 usually

generates only one subject of the prompt so its ‘w/o M’ score is high.
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Figure 5. Quantitative comparisons between original SD2.1 [41]

and our method.

SD3-medium Self-Cross (Ours)
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Figure 6. Quantitative comparisons between SD3-medium [41]

and our method.



(a) 1 patch (b) 16 patches (c) masked patches

Figure 7. Our Self-Cross guidance works the best with masked

patches, which verifies our assumption that all patches of a subject

not just the most discriminant one need to be considered for elim-

inating subject mixing.

GPT4o [1], to provide more precise feedback. Given a text

prompt in the form of “a class A and a class B”, we devel-

oped questions to (1) verify the existence of both subjects;

(2) confirm the recognizability of both subjects, ensuring

no artifacts or distortions are present; and (3) check that the

image does not exhibit a mixture of the two subjects, i.e.,

subject mixing. These three aspects capture both local and

global information about the image, serving as comprehen-

sive and reliable metrics including Ext, Rec, w/o M, and

Rel scores respectively. W/o score is most relevant to our

study of subject mixing, while Ext and Rec scores are effec-

tive in assessing the issue of subject neglect. Rel measures

the spatial relationship of subjects. The full set of question

prompts we designed are in the appendix C.

As shown in Table 4, when built on Stable Diffusion

1.4, our method is overwhelmingly better than baselines in-

cluding SD [41], INITNO [17], and CONFORM [31] on

Animal-Animal and Similar Subjects datasets(SSD-1), es-

pecially for reducing subject mixing (w/o M score). For

animal-animal prompts, we achieved a w/o M score of

92.94%, which is 8.7% better than the second-best score

(84.22% CONFORM). For similar subjects dataset(SSD-1),

our w/o M score of 86.45% is 6.7% better than the second-

best score (70.70% INITNO). Besides, for less challenging

datasets with distinct subjects including Animal-Object and

Object-Object, we still achieved better results.

Interestingly, although our method focuses on address-

ing subjectmixing, it can also reduce subjectneglect and

improve the recognizability/fidelity of generated subjects to

some extent. However, visualization of the attention maps

shows the inefficiency of attend&excite in Stable Diffu-

sion 2.1. As we rely on attend&excite to encourage the

existence of different subjects, our performance is influ-

enced in Stable Diffusion 2.1. So, for Stable Diffusion

2.1, we apply CONFORM for the first few steps to en-

sure the existence of subjects and apply our method in later

steps(indicated as CONFORM+ours), as shown in Tab. 5.

To further prove the effectiveness of our method on DiT, we

also implement our method on Stable Diffusion 3 medium

as shown quantitatively in Tab. 1 and qualitatively in Fig. 6.

Text-text similarities Text-text similarities, also known

as BLIP scores, are the similarity between captions gener-

ated by a vision-language foundation model [28] and the

original prompts used to synthesize the images. This metric

captures subjects and attributes from the original prompt,

then measures the coherency and consistency of the gener-

ated content with the textual descriptions. As shown in Ta-

ble 2, Table 3, and Table 1, compared with other methods,

our approach, including the combined one, reaches SOTA

performances on all benchmarks.

6. Conclusion and Future Work

Subject mixing remains a persistent issue for diffusion-

based image synthesis, particularly for similar-looking sub-

jects. We propose Self-Cross diffusion guidance to boost

the performance of any diffusion-based image synthesis of

similar subjects. Our method is motivated by the overlap

between self-attention maps and cross-attention maps for

mixed subjects, which is penalized by the proposed self-

cross diffusion guidance loss during inference. Further

more, we aggregate self-attention maps for multiple patches

to a single attention map. In other words, our formula-

tion involves all relevant patches of a subject beyond the

most discriminant one. We are the first to reduce overlap

between cross-attention and aggregated elf-attention maps,

while previous methods are limited to the self-attention map

from one patch or rely on cross-attention maps alone for

guidance. We utilize standard gradient-based optimization

and initial noise optmization [17] for minimizing our guid-

ance loss during inference. We also released SSD, a new

dataset of similar subjects for image synthesis, and lever-

aged the latest vision large language model (GPT-4o) for au-

tomatic and reliable evaluation of different methods. Quali-

tative and quantitative results show significant improvement

over previous approaches. Our Self-Cross guidance greatly

reduced subject mixing while also reducing the issue of ob-

ject neglect as a side effect.

In the future, we will extend our approach to video gen-

eration of similar subjects that face challenges of subject

mixing. We also anticipate the issue of subject mixing to be

less prominent with newer backbone models but not disap-

pear. We will keep exploring variants of Sef-Cross diffusion

guidance for finer-grained subjects synthesis and addressing

other issues such as attribute binding.
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Self-Cross Diffusion Guidance for Text-to-Image Synthesis of Similar Subjects

Supplementary Material

Figure 8. attention maps in multimodal diffusion transformer.

A. More implementation details

Our method is training-free. Following the setting from At-

tend&Excite [8], we use pseudo-numerical methods [29]

and classifier-free guidance [20] to generate images with

the original image resolutions of Stable Diffusion models.

We apply Self-Cross Diffusion Guidance to the first half(25

steps) of the sampling process(50 steps in total). Empiri-

cally, we apply refinements at the 10th and 20th steps of

the sampling process with thresholds of 0.2 for the cross-

attention response score Scross-attn and 0.3 for self-cross

guidance Sself-cross. For each prompt, we generated 65 im-

ages with consistent random seeds for each method. Tab. 6

shows the number of prompts and generated images for our

experiments.

UNet-based Diffusion models have attention maps of

different resolutions including 16× 16, 24× 24, 32× 32,

etc. We chose the attention maps that were found most

semantically meaningful. In Stable Diffusion 1, we chose

attention maps with a resolution of 16 × 16 [18]. In Sta-

ble Diffusion 2, We empirically chose attention maps with

a resolution of 24 × 24. Note that for cross-attention maps

of sizes larger than 16 × 16, we normalize their sum to 1

so the values in self-attention maps won’t be too small in

comparison.

For diffusion models based on multimodal diffusion

transformers, e.g. Stable Diffusion 3-medium, we replace

the conventional cross-attention with the part of attention

between text tokens and image tokens(image-text attention)

and replace self-attention with the attention between image

tokens(image self-attention) [13] [49]. All of these can be

extracted from the multimodal diffusion transformer mod-

ule, as shown in 8. As SD3-medium concatenates the

text embeddings from CLIP and T5, we extract the corre-

sponding two image-text attention maps and take the maxi-

mum value of the two for each image token (patch) to build

image self-attn “bear” self-attn “elephant”

Figure 9. Artiface of image concatenation by Self-Self guidance between

the aggregated self-attention maps.

the cross-attention map for Self-Cross Diffusion Guidance.

Eq.9.

Ac
i [x, y] = max(Ac

i,clip[x, y], A
c
i,t5[x, y]) (9)

After attention maps were extracted, We averaged atten-

tion maps head-wise and layer-wise in our implementation.

Dataset Animal-Animal Animal-Obj Obj-Obj SSD TSD

# of prompts 66 144 66 31 21

# of images 4290 9360 4290 2015 1365

Table 6. Number of prompts and images for each dataset.

B. An alternative loss between aggregated self-

attention maps

Some readers would suggest an alternative loss to minimize

the distance between aggregated self-attention maps(we

name it Self-Self guidance in short). Admittedly, this

method would achieve comparable results on text-text sim-

ilarity or TIFA-GPT4o score. However, as shown in Fig. 9,

Self-Self guidance easily leads to the artifact of concate-

nated images. While cross-attention maps correspond to

subjects only, aggregated self-attention maps can include

background. As Self-Self guidance penalizes any inter-

section between aggregated self-attention maps, the back-

ground is more likely to be separated into two groups re-

sulting in a concatenated image.

C. Question prompt for TIFA-GPT4o

In this section, we detail the implementation of TIFA-

GPT4o scores and list the full question prompt used in

Fig. 10. GPT4o’s answers are translated into True (T) or

False (F) values for evaluation.

For Existence (Ext), we calculate the percentage of an-

swers when both Question 1 and Question 3 are True. In

other words, the presence of both subjects corresponds to

2vanilla SD2.1 usually generates only one subject of the prompt so its

‘w/o M’ score is high.



You are now an expert to check the faithful-

ness of the synthesized images. The prompt is

‘‘a {class_A} and a {class_B}’’. Based

on the image description below, reason and answer the

following questions:

1. Is there {class_A} appearing in this image?

Give a True/False answer after reasoning.

2. Is the generated {class_A} recognizable and

regular (without artifacts) in terms of its shape

and semantic structure only? For example, answer

False if a two-leg animal has three or more legs, or a

two-eye animal has four eyes, or a two-ear animal

has one or three ears. Ignore style, object size in

comparison to its surroundings. Give a True/False

answer after reasoning.

3. Is there {class_B} appearing in this image?

Give a True/False answer after reasoning.

4. Is the generated {class_B} recognizable and

regular (without artifacts) in terms of its shape

and semantic structure only? For example, answer

False if a two-leg animal has three or more legs, or a

two-eye animal has four eyes, or a two-ear animal

has one or three ears. Ignore style, object size in

comparison to its surroundings. Give a True/False

answer after reasoning.

5. Is the generated content a mixture of {class_A}

and {class_B}? An example of mixture is that

Sphinx resembles a mixture of a person and a lion.

Give a True/False answer after reasoning.

Figure 10. Our Question Prompt for TIFA-GPT4o. Question 1 &

3 ask about the existence of objects; Question 2 & 4 ask about the

recognizability of objects; Question 5 asks about whether the gen-

erated content resembles some mixture of two categories giving

the example of Sphinx as in-context learning.

the intersection of “A appears” and “B appears”. Similarly,

for Recognizability (Rec), we compute the percentage of

answers when both Question 2 and Question 4 are True, en-

suring that both subjects are recognizable without artifacts

or distortions. For Not a Mixture (w/o M), we compute the

percentage of answers where Question 5 is False, reflecting

the negation of being a mixture.

D. Unreliability of CLIP scores

The difference in clip scores between INITNO [17], CON-

FORM [31], and our method is within 1 % as shown in

Tab. 8 and 7. However, we found CLIP scores unreliable

for evaluating the faithfulness of text prompts and synthetic

images for subject mixing. Through experiments, we found

that the clip score sometimes can’t tell subject mixing, as

previous work [22] also pointed out. Fig. 12 shows example

images generated by CONFORM [31] and our method with

Self-Cross diffusion guidance with the same caption and

random seed. For these three pairs of images, Self-Cross

diffusion guidance provides visually better images with no

subject mixing. However, the corresponding clip scores are

much worse than the images generated by CONFORM [31].

Fig. 11 gives a typical example of when the CLIP score

is lower for a synthetic image that is more faithful w.r.t. text

prompts. Table. 9. Tab. 7 and Tab. 8 show CLIP scores

for different methods with multiple datasets respectively.

While our method outperforms the original stable diffusion

for all datasets, it is on par with or slightly worse than other

methods in terms of CLIP scores.

% Animal-Animal Animal-Obj Obj-Obj SSD-2

SD1.4 31.0 34.3 33.6 31.2

INITNO 33.4 35.9 36.4 31.7

CONFORM 33.9 35.8 35.8 32.0

Self-Cross 33.2 35.1 35.9 31.9

Table 7. CLIP Scores with full prompts (↑) for different methods.

% Animal-Animal Animal-Obj Obj-Obj SSD-2

SD1.4 21.6 24.8 23.9 25.8

INITNO 24.9 26.8 27.1 26.2

CONFORM 25.4 26.7 26.6 26.6

Self-Cross 25.1 26.1 26.7 26.6

Table 8. CLIP Scores with minimum object prompts (↑).

Additionally, with the same batch of images, the result-

ing clip score could be different if we simply swap the or-

der of subjects in the prompt during evaluation, as shown in

Figure 11. (Left): image generated by CONFORM [31]; (right):

image generated by our approach under the same seed. Left image

shows a higher CLIP score. However, there are obvious content

mixing issues in the left image, which GPT4o is able to capture

with VQA. This is an example that CLIP score is not as reliable as

TIFA for checking subject mixing.
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Figure 12. CLIP Scores (↑) for synthetic images generated by

CONFORM [31] (left) and our self-cross guidance (right). CLIP

scores are unreliable for measuring image quality w.r.t. subject

mixing.

Tab. 9. For example, we generated 65 images with the cap-

tion “a bear and a turtle”. Then we evaluated the clip score

with “a bear and a turtle” and “a turtle and a bear” sepa-

rately. Surprisingly, we found the clip score for the former

is 35.1% while the clip score for the latter is only 34.3%.

To conclude, we resort to the more reliable TIFA-GPT4o

scores in this paper, which are more correlated with human

judgment, as opposed to the popular CLIP scores.

E. More qualitative results

We show more qualitative comparisons in Fig. 14 and

Fig. 15. We select four seeds for each prompt and each

method to generate.

These samples illustrate that our approach effectively en-

courages objects to appear as specified in the prompt. For

% a bear and a turtle a bird and a bear a bird and a rabbit a bird and a lion

original 35.1 33.9 32.0 33.0

reverse 34.3 34.6 32.7 33.6

Table 9. Inconsistent CLIP Scores ↑ on a set of images with text

prompts reversed.

instance, given the prompt “a green backpack and a brown

suitcase” in Fig. 14, INITNO [17] sometimes struggles with

attribute binding, and CONFORM [31] often fails to in-

clude the ‘suitcase’. In contrast, our Self-Cross approach

successfully addresses these challenges by generating im-

ages where both objects are present and correctly aligned

with their described attributes. Moreover, our method ex-

cels at resolving subject mixing. Images synthesized using

our approach typically feature well-disentangled character-

istics for each instance. For example, with the prompt “a

cat and a rabbit” in Fig. 15, other methods often mix fea-

tures, such as cat faces with rabbit ears, whereas our Self-

Cross method accurately generates distinct and faithful rep-

resentations of both the cat and the rabbit. Similarly, for the

prompt a gray backpack and a green clock, other methods

sometimes produce “a green clock-like backpack”, blend-

ing features improperly. In contrast, our method faithfully

adheres to the prompt, producing clear and visually coher-

ent representations of both the backpack and the clock.

F. Comparison with Attention Refocusing [35]

We further compare our method to Attention Refocusing

[35] which depends on external knowledge and model to

generate object layout. As shown in Tab. 10, our method

demonstrates a significant advantage in Existence (Ext),

achieving a 7.56% improvement, and an even more substan-

tial advantage in Recognizability (Rec), with a remarkable

23.34% improvement. These results indicate that our ap-

proach more effectively ensures that both subjects appear

and are free of artifacts or distortions. Additionally, our

method achieves comparable performance in reducing sub-

ject mixing (w/o M), demonstrating its robustness in sepa-

rating distinct features of different subjects within the gen-

erated images. Our method also shows an improved text-to-

text similarity being 4.5% better, which means our gener-

ated images are more faithful to the given prompts.

Unlike Attention Refocusing, which relies on a language

model to pre-define the layouts, our method operates inde-

pendently of external knowledge, making it more versatile

and applicable to a wider range of scenarios. The supe-

rior results in existence and recognizability highlight our

approach’s ability to generate faithful and high-quality im-

ages without relying on external constraints while maintain-

ing competitive performance in mitigating subject mixing.

G. Failure examples and discussion

Except for its success in reducing subject mixing, how-

ever, Self-Cross Guidance sometimes generates unsatisfac-

tory images, such as blurry images, cartoons, and images

with object-centric problems. These failure cases indicate

that the method is not perfect. We show failure examples of

our method in Fig. 13. We suspect that the artifact of blur-



Metric (↑) SD1.4 [41] Attn-Refocus [35] Self-Cross (Ours)

Ext 39.51 86.99 94.55

Rec 29.70 64.45 87.79

w/o M 72.24 93.80 92.94

CLIP score 31.0 33.9 33.2

Text sim 76.5 79.8 84.3

Table 10. Quantitative comparison to Attention Refocusing [35]

on Animal-Animal benchmark in terms of TIFA-GPT4o scores

[22], CLIP score, and text-to-text similarity (Txt sim) [8]. Atten-

tion Refocusing relies on external knowledge by using a language

model to pre-define the layout. Our proposed method has a sig-

nificant advantage for existence (Ext), recognizability (Rec), and

text-to-text similarity while reaching a comparable performance

on reducing subject mixing (w/o M) and CLIP score.

(a) Blurry images

(b) Cartoonish images

(c) Concatenated subimages.

Figure 13. Our method with self-cross guidance failed in some

cases and generated blurry images (a), cartoonish images (b), or

concatenated subimages (c).

riness can be addressed by aggregation of attention maps

at higher resolution. We also found that previous methods

including INITNO [17] and CONFORM [31] may also pro-

duce cartoonish or concatenated images.
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Figure 14. More qualitative comparisons of Self-Cross (ours) to SD1.4 [41], INITNO [17], CONFORM [31]. For each prompt in the left

column, we sample four seeds and show the results of different methods.
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Figure 15. More qualitative comparisons of Self-Cross (ours) to SD1.4 [41], INITNO [17], CONFORM [31]. For each prompt in the left

column, we sample four seeds and show the results of different methods.
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